1 Association, A. s. 2016 Alzheimer's disease facts and figures. Alzheimer's & Dementia12, 459-509 (2016).
2 Scheltens, P. et al. Alzheimer's disease. The Lancet388, 505-517, doi:10.1016/S0140-6736(15)01124-1 (2016).
3 Bondi, M. W., Edmonds, E. C. & Salmon, D. P. Alzheimer’s Disease: Past, Present, and Future. Journal of the International Neuropsychological Society23, 818-831, doi:10.1017/S135561771700100X (2017).
4 Wang, Y. & Mandelkow, E. Tau in physiology and pathology. Nature Reviews Neuroscience17, 22 (2016).
5 Sheng, M., Sabatini, B. L. & Südhof, T. C. Synapses and Alzheimer’s disease. Cold Spring Harbor perspectives in biology4, a005777 (2012).
6 Wang, J., Gu, B. J., Masters, C. L. & Wang, Y.-J. A systemic view of Alzheimer disease—insights from amyloid-β metabolism beyond the brain. Nature Reviews Neurology13, 612 (2017).
7 Kametani, F. & Hasegawa, M. Reconsideration of amyloid hypothesis and tau hypothesis in Alzheimer's disease. Frontiers in neuroscience12, 25 (2018).
8 Ricciarelli, R. & Fedele, E. The amyloid cascade hypothesis in Alzheimer's disease: it's time to change our mind. Current neuropharmacology15, 926-935 (2017).
9 Braak, H. & Braak, E. Staging of Alzheimer's disease-related neurofibrillary changes. Neurobiology of aging16, 271-278 (1995).
10 Braak, H. & Del Tredici, K. Spreading of tau pathology in sporadic Alzheimer’s Disease along Cortico-cortical top-down connections. Cerebral Cortex28, 3372-3384 (2018).
11 Gorantla, N. V., Shkumatov, A. V. & Chinnathambi, S. in Tau Protein 3-20 (Springer, 2017).
12 Avila, J. et al. Tau structures. Frontiers in aging neuroscience8, 262 (2016).
13 Martin, L., Latypova, X. & Terro, F. Post-translational modifications of tau protein: implications for Alzheimer's disease. Neurochemistry international58, 458-471 (2011).
14 Mietelska-Porowska, A., Wasik, U., Goras, M., Filipek, A. & Niewiadomska, G. Tau protein modifications and interactions: their role in function and dysfunction. International journal of molecular sciences15, 4671-4713 (2014).
15 Sonawane, S. K. & Chinnathambi, S. Prion-Like Propagation of Post-Translationally Modified Tau in Alzheimer’s Disease: A Hypothesis. Journal of Molecular Neuroscience65, 480-490 (2018).
16 Hanger, D. P., Anderton, B. H. & Noble, W. Tau phosphorylation: the therapeutic challenge for neurodegenerative disease. Trends in molecular medicine15, 112-119 (2009).
17 Peterson, D. W. et al. Cinnamon extract inhibits tau aggregation associated with Alzheimer's disease in vitro. Journal of Alzheimer's Disease17, 585-597 (2009).
18 Li, W. et al. Inhibition of tau fibrillization by oleocanthal via reaction with the amino groups of tau. Journal of neurochemistry110, 1339-1351 (2009).
19 He, X. et al. Resveratrol attenuates formaldehyde induced hyperphosphorylation of tau protein and cytotoxicity in N2a cells. Frontiers in neuroscience10, 598 (2017).
20 Rane, J. S., Bhaumik, P. & Panda, D. Curcumin inhibits tau aggregation and disintegrates preformed tau filaments in vitro. Journal of Alzheimer's Disease60, 999-1014 (2017).
21 Shen, X. Y. et al. Quercetin inhibits okadaic acid-induced tau protein hyperphosphorylation through the Ca2+‑calpain‑p25‑CDK5 pathway in HT22 cells. International journal of molecular medicine41, 1138-1146 (2018).
22 Syarifah-Noratiqah, S.-B., Naina-Mohamed, I., Zulfarina, M. S. & Qodriyah, H. Natural polyphenols in the treatment of Alzheimer's disease. Current drug targets19, 927-937 (2018).
23 Gorantla, N. V., Das, R., Mulani, F. A., Thulasiram, H. V. & Chinnathambi, S. Neem derivatives inhibits tau aggregation. Journal of Alzheimer's disease reports3, 169-178 (2019).
24 Spagnuolo, C. et al. Neuroprotective role of natural polyphenols. Current topics in medicinal chemistry16, 1943-1950 (2016).
25 Dubey, T. & Chinnathambi, S. Brahmi (Bacopa monnieri): An ayurvedic herb against the Alzheimer's disease. Archives of Biochemistry and Biophysics, 108153 (2019).
26 Darvesh, A. S., Carroll, R. T., Bishayee, A., Geldenhuys, W. J. & Van der Schyf, C. J. Oxidative stress and Alzheimer’s disease: dietary polyphenols as potential therapeutic agents. Expert review of neurotherapeutics10, 729-745 (2010).
27 Freyssin, A., Page, G., Fauconneau, B. & Bilan, A. R. Natural polyphenols effects on protein aggregates in Alzheimer's and Parkinson's prion-like diseases. Neural regeneration research13, 955 (2018).
28 Ramassamy, C. Emerging role of polyphenolic compounds in the treatment of neurodegenerative diseases: a review of their intracellular targets. European journal of pharmacology545, 51-64 (2006).
29 Ebrahimi, A. & Schluesener, H. Natural polyphenols against neurodegenerative disorders: potentials and pitfalls. Ageing research reviews11, 329-345 (2012).
30 Liu, H. et al. The fascinating effects of baicalein on cancer: a review. International journal of molecular sciences17, 1681 (2016).
31 Kang, K. A. et al. Baicalein inhibits oxidative stress-induced cellular damage via antioxidant effects. Toxicology and industrial health28, 412-421 (2012).
32 Li, F.-Q., Wang, T., Pei, Z., Liu, B. & Hong, J.-S. Inhibition of microglial activation by the herbal flavonoid baicalein attenuates inflammation-mediated degeneration of dopaminergic neurons. Journal of Neural Transmission112, 331-347 (2005).
33 Górniak, I., Bartoszewski, R. & Króliczewski, J. Comprehensive review of antimicrobial activities of plant flavonoids. Phytochemistry Reviews18, 241-272 (2019).
34 Moghaddam, E. et al. Baicalin, a metabolite of baicalein with antiviral activity against dengue virus. Scientific reports4, 5452 (2014).
35 Li, Y., Zhao, J. & Hölscher, C. Therapeutic potential of baicalein in Alzheimer’s disease and Parkinson’s disease. CNS drugs31, 639-652 (2017).
36 Liang, W., Huang, X. & Chen, W. The effects of Baicalin and Baicalein on cerebral ischemia: a review. Aging and disease8, 850 (2017).
37 Hung, K.-C., Huang, H.-J., Wang, Y.-T. & Lin, A. M.-Y. Baicalein attenuates α-synuclein aggregation, inflammasome activation and autophagy in the MPP+-treated nigrostriatal dopaminergic system in vivo. Journal of ethnopharmacology194, 522-529 (2016).
38 Zhao, W.-Z., Wang, H.-T., Huang, H.-J., Lo, Y.-L. & Lin, A. M.-Y. Neuroprotective effects of baicalein on acrolein-induced neurotoxicity in the nigrostriatal dopaminergic system of rat brain. Molecular neurobiology55, 130-137 (2018).
39 Moon, J.-H. & Park, S.-Y. Baicalein prevents human prion protein-induced neuronal cell death by regulating JNK activation. International journal of molecular medicine35, 439-445 (2015).
40 Gu, X.-H. et al. The flavonoid baicalein rescues synaptic plasticity and memory deficits in a mouse model of Alzheimer’s disease. Behavioural brain research311, 309-321 (2016).
41 Zhou, L. et al. Baicalein improves behavioral dysfunction induced by Alzheimer’s disease in rats. Neuropsychiatric disease and treatment12, 3145 (2016).
42 Tai, H.-C. et al. The synaptic accumulation of hyperphosphorylated tau oligomers in Alzheimer disease is associated with dysfunction of the ubiquitin-proteasome system. The American journal of pathology181, 1426-1435 (2012).
43 Zhu, M. et al. The flavonoid baicalein inhibits fibrillation of α-synuclein and disaggregates existing fibrils. Journal of Biological Chemistry279, 26846-26857 (2004).
44 Masuda, M. et al. Small molecule inhibitors of α-synuclein filament assembly. Biochemistry45, 6085-6094 (2006).
45 Kumar, S. et al. Stages and conformations of the Tau repeat domain during aggregation and its effect on neuronal toxicity. Journal of Biological Chemistry289, 20318-20332 (2014).
46 Hong, D.-P., Fink, A. L. & Uversky, V. N. Structural characteristics of α-synuclein oligomers stabilized by the flavonoid baicalein. Journal of molecular biology383, 214-223 (2008).
47 del Amo, J. M. L. et al. Structural properties of EGCG-induced, nontoxic Alzheimer's disease Aβ oligomers. Journal of molecular biology421, 517-524 (2012).
48 Hyung, S.-J. et al. Insights into antiamyloidogenic properties of the green tea extract (−)-epigallocatechin-3-gallate toward metal-associated amyloid-β species. Proceedings of the National Academy of Sciences110, 3743-3748 (2013).
49 Taniguchi, S. et al. Inhibition of Heparin-induced Tau Filament Formation by Phenothiazines, Polyphenols, and Porphyrins. Journal of Biological Chemistry280, 7614-7623, doi:10.1074/jbc.M408714200 (2005).
50 Conway, K. A., Rochet, J.-C., Bieganski, R. M. & Lansbury, P. T. Kinetic stabilization of the α-synuclein protofibril by a dopamine-α-synuclein adduct. Science294, 1346-1349 (2001).
51 Liu, H., Bao, W., Ding, H., Jang, J. & Zou, G. Binding Modes of Flavones to Human Serum Albumin: Insights from Experimental and Computational Studies. The Journal of Physical Chemistry B114, 12938-12947, doi:10.1021/jp102053x (2010).
52 Song, S.-m., Wang, Y.-x., Xiong, L.-m., Qu, L.-b. & Xu, M.-t. Interaction between baicalein and amyloid-β fibrils studied by fluorescence spectroscopy. Chemical Research in Chinese Universities29, 20-25, doi:10.1007/s40242-013-2180-1 (2013).
53 Lu, J.-H. et al. Baicalein Inhibits Formation of α-Synuclein Oligomers within Living Cells and Prevents Aβ Peptide Fibrillation and Oligomerisation. ChemBioChem12, 615-624, doi:10.1002/cbic.201000604 (2011).
54 Sonawane, S. K., Balmik, A. A., Boral, D., Ramasamy, S. & Chinnathambi, S. Baicalein suppresses Repeat Tau fibrillization by sequestering oligomers. Archives of Biochemistry and Biophysics675, 108119 (2019).
55 Sonawane, S. K., Ahmad, A. & Chinnathambi, S. Protein-Capped Metal Nanoparticles Inhibit Tau Aggregation in Alzheimer’s Disease. ACS omega4, 12833-12840 (2019).
56 Gorantla, N. V., Khandelwal, P., Poddar, P. & Chinnathambi, S. in Tau Protein 21-31 (Springer, 2017).
57 Gorantla, N. V. et al. Molecular Cobalt (II) Complexes for Tau Polymerization in Alzheimer’s Disease. ACS omega (2019).
58 Balmik, A. A., Sonawane, S. K. & Chinnathambi, S. Modulation of Actin network and Tau phosphorylation by HDAC6 ZnF UBP domain. bioRxiv, 702571 (2019).