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Abstract

Spatial transcriptomics data can provide high-throughput gene expression profiling and spatial structure
of tissues simultaneously. An essential question of its initial analysis is cell clustering. However, most
existing studies rely on only gene expression information and cannot utilize spatial information
efficiently. Taking advantages of two recent technical development, spatial transcriptomics and graph
neural network, we thus introduce CCST, Cell Clustering for Spatial Transcriptomics data with graph
neural network, an unsupervised cell clustering method based on graph convolutional network to improve
ab initio cell clustering and discovering of novel sub cell types based on curated cell category annotation.
CCST is a general framework for dealing with various kinds of spatially resolved transcriptomics. With
application to five in vitro and in vivo spatial datasets, we show that CCST outperforms other spatial
cluster approaches on spatial transcriptomics datasets, and can clearly identify all four cell cycle phases
from MERFISH data of cultured cells, and find novel functional sub cell types with different micro-
environments from seqFISH+ data of brain, which are all validated experimentally, inspiring novel
biological hypotheses about the underlying interactions among cell state, cell type and micro-
environment.

Introduction

A number of spatial transcriptomics technologies have been developed to achieve high-throughput gene
expression profiling and spatial structure of tissues simultaneously. Most of them are based on
fluorescence in situ hybridization (FISH) approaches, such as osmFISH (1), MERFISH (2-5), seqFISH (6,
7), seqFISH+ (5), and STARmap (8), which can quantify RNA transcripts of genes and their locations in
the sample. Integrated with image analysis, FISH enables single cell resolution high-throughput gene
expression quantification and spatial location recording. FISH methods have been applied to different
species and tissues, such as lung (9), brain (1, 6, 8, 10), kidney (11), etc. These studies have provided new
biological insights on single cell location, neighborhood and interaction with in vivo tissue context.
Alternative approaches include RNA-seq based technologies, like spatial transcriptomics (ST) (12), Slide-
Seq (13), LCM-Seq (14), and etc. While these methods lead to whole transcriptomics profiling, most
cannot provide single cell resolution.

An essential question of singe cell gene expression data is cell state or type identification, which is
always one of the key steps in any processing pipeline of the data, including lineage (15), cell cycle (5)
and cell-cell interaction analysis (16, 17), etc. Now there have been several clustering approaches
developed for single cell RNA-seq data, which are mainly based on clustering of low dimension
representation of gene expression of single cells (18—21). Most spatial data studies also rely on such
strategies. For the MERFISH dataset of cultured U-2 OS cells (5), graph-based Louvain community
detection (22, 23) is applied to top principal components of gene expression of single cells (24, 25).
Integration of scRNA-seq is also adopted. For example, In the seqFISH study (26), a multiclass support
vector machine (SVM) classifier is trained by cell type information from scRNA-seq data, and then applied
to map seqFISH cells to corresponding cell types.
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For spatial data, these expression-based methods cannot make full use of spatial location information,
which is often coupled with cell identities. /n vitro cultured cells in the same cell cycle phase are more
likely to resident together (5), and certain cell type of in vivotissue is known to be spatially proximal to
itself or to specific cell types (27). Spatial structure thus can be used as an informative feature to improve
cell clustering. Giotto (28) is a package designed for processing spatial gene expression data as well.
Recently, stLearn (29) has been developed. It firstly utilizes the standard Louvain clustering procedure as
used in scRNA-seq analysis to get a k-nearest neighbor (kNN) graph. Next the initial cluster is split into
sub-clusters if its spots are spatially separated. smfishHmrf (30) is another spatial clustering method that
starts by the SVM classifier trained using scRNA-seq data as mentioned above. It then updates cell
clustering according to the principle that neighbor cells of the same identity have higher score.
BayesSpace (31) is a fully Bayesian statistical clustering method designed for only spatial
transcriptomics (ST) data which encourages neighboring spots to belong to the same cluster. SpaGCN
(32) utilizes a vanilla graph convolutional network (GCN) to integrate gene expression with spatial
location and histology in ST. SEDR (33) uses a deep autoencoder to map the gene latent representation to
a low-dimensional space. Most of spatial clustering approaches simply assume that the same cell group
is spatially close to each other and do not take into consideration the whole complex global cell
interactions across the tissue sample. Much work still needs to be investigated on this promising spatial
representation.

Here we develop a cell clustering method, Cell Clustering for Spatial Transcriptomics data (CCST), based
on graph convolutional networks (GCNs), which can simultaneously joint both gene expression and
complex global spatial information of single cells from spatial gene expression data. A few years ago,
GCN (34) was introduced to handle non-Euclidean relationship data, maintaining the power of
convolutional neural network (CNN) (35, 36). The relationship data is encoded as graph with adjacent
matrix representing relationship among variables and node feature matrix representing variable
observations. GCN layer is designed to integrate graph (spatial structure in our case) and node feature
(gene expression). For the cell clustering of spatial data, we first convert the data as graph, where node
represents cell with gene expression profile as attributes and edge represents neighborhood relationship
between cells. Next a series of GCN layers is used to transfer graph and gene expression information as
cell node embedding vectors, meanwhile the graph is corrupted to generate negative embeddings. By
learning the discrimination task, the neural network (NN) model is trained to encode cell embedding from
spatial gene expression data, which is used for cell clustering.

CCST is tested on both FISH-based single cell transcriptomics and spot-based ST. CCST is also tested on
both in vitro and in vivo spatial datasets, with tasks of ab initio cell clustering and sub cell type
discovering based on manually curated cell category annotation. Our experimental results suggest CCST
can greatly improve ab initio cell clustering upon prior methods in MERFISH dataset (5), by clearly
recognizing cell groups of all four cell cycle phases of cultured cells of the same cell type. CCST can also
be used to find novel sub cell types and their interactions with biological insights from seqFISH+ datasets
of mouse olfactory bulb (OB) and cortex tissues (10). In addition, to show superior to recently developed

methods, CCST is evaluated on two ST datasets and achieves better clustering results. All above results
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indicate that CCST can provide informative clues for better understanding cell identity, interaction, spatial
organization in tissues and organs.

The Ccst Framework

We extended the unsupervised node embedding method Deep Graph Infomax (DGI) (37), and developed
CCST to discover novel cell subpopulation from spatial single cell expression data. As shown in Fig. 1,
with both single cell location and gene expression information as inputs, CCST firstly encodes the spatial
data into two matrices. One is hybrid adjacent matrix based on cell neighborhood where a
hyperparameter A(set as 0.8 by default on FISH and 0.2 on ST) is used for intracellular (gene) and
extracellular (spatial) information balance (Methods), and the other one is gene expression profile matrix
of single cell. Both matrices are fed into the DGI network to calculate embedding vector for each cell. DGI
employs a series of GCN layers that enables it to integrate both graph (cell location) and node attribute
(gene expression) as node (single cell) embedding vectors. The edges in the graph are also permuted to
generate negative node embedding vectors that do not have any spatial structure information. By being
trained how to discriminate the two embedding types, CCST learns to encode cell node embedding that
contains both spatial structural information and gene expression. After dimension reduction by Principal
Component Analysis (PCA), k-means++ (38) was used for node clustering to find novel cell groups or cell
subpopulations.

Applying CCST to spatial gene expression data

While a number of spatial gene expression data have been created, here we focus on three FISH-based
data that both contain thousands of genes with single cell resolution. The first one is MERFISH data (5)
from in vitro cultured U-2 OS cells that provides 10,050 genes in 1,368 cells in three batches. This data
only includes one cell type with different cell cycle phases. As the authors of the MERFISH paper
mentioned, they have discovered obvious spatial structures of cell cycle phase within this cell population,
so it would be an ideal spatial dataset to test clustered cell groups since cell cycle can be used as ground
truth here. The second one is seqFISH+ data (10), consisting of 10,000 genes from 2,050 (913) cells in
separated fields of view from mouse OB (cortex). Unlike the MERFISH data of only one cultured cell type,
seqFISH+ data include several in vivo cell types and so it can be used to explore potential cell
subpopulations with complex biological molecular and spatial features. See Methods for dataset and
preprocessing details.

Although CCST is designed to find novel sub cell type and single cell interactions, CCST is also applied to
two more ST datasets here to test the generalization ability and extend potential application scope. These
two ST datasets are human dorsolateral prefrontal cortex (DLPFC) and 10x Visium spatial
transcriptomics data of human breast cancer. The Adjust Rand Index (ARI) and local inverse Simpson's
index (LISI) (39) are used for evaluating the performance of CCST and other approaches.

CCST identifies spatial heterogeneity from MERFISH dataset
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We assess CCST's ability to cluster cells on the cultured U-2 OS MERFISH dataset, which includes all four
cell cycle phases within only one single cell type. CCST s firstly trained with normalized gene expression
matrix and hybrid adjacent matrix from spatial structure to generate the embedding vector with size of
256. To further reduce the feature dimension, PCA is performed, and the top 30 principal components are
selected for k-means clustering with k of 5, as suggested in the MERFISH paper(5). Given the fact that C2
only has two cells, the following analysis focuses on the other four groups.

Figs. 2a-2c shows the spatial distribution of grouped cells by CCST on all three replicates. Cells of CO to
C4 are points in different colors respectively, and the position is the center of each cell. To make fully use
of the dataset, we encode all the three replicates with just one adjacent matrix where cells are only
connected within each batch such that the matrix is a block diagonal matrix composed of three sub
adjacent matrices (Methods and Fig. S1). To further investigate the neighborhood spatial structure of
cells assigned to different group, the neighbor enrichment ratios for CO, C1, C3 and C4 are shown in Figs.
2e-h. For all cells in a certain group, we first collect their neighbor cells according to the initial adjacent
matrix, next we count how many of the neighbors are assigned to each group, and calculate their
proportions as the neighbor enrichment ratios. The ratios clearly show that cells tend to be spatially
neighbored to those in the same group, which is similar to the conclusion in the MERFISH literature. As
discussed in the next section, GO term analysis suggests that each cluster corresponds to one cell cycle
phase exclusively (CO: M, C1: S, C3: G2, C4: G1). Itis also noticed that CO (M) is spatially proximal to C3
(G2),sois C1 (S) to C3 (G2) and C4 (G1) to CO (M), which indicates that cells of adjacent phases co-
locate with each other as well. This could be explained by the fact that spatially proximal cells may be
divided from the same mother cell.

CCST clearly identifies all four cell cycle phases

We next perform differential expression (DE) analysis to verify different biological functions of each
clustered cell group. Here Mann-Whitney U Test is used to find highly expressed DE genes in each cell
group compared with all other groups. Then Gene Ontology (GO) term enrichment analysis is done using
top 200 significantly DE genes with the whole MERFISH gene list as background gene set.

The top 10 significantly enriched GO terms for each cell group sorted by False Discovery Rate (FDR) value
are shown in the Fig. 3. These results indicate that CCST can clearly identify all four cell cycle phases.
The significantly highly expressed genes in C1 are mostly related with GO terms of DNA replication
(G0O:0006260), DNA-dependent DNA replication (G0:0006261), cell cycle (G0:0007049) and cell cycle
DNA replication (G0:0044786). This means that C1 refers to the cells in S phase, the stage when DNA is
replicated. The significant DE genes in C3 are mostly related with GO terms of ribosome biogenesis
(G0:0042254), ribonucleoprotein complex biogenesis (G0:0022613), rRNA processing (G0:0006364),
ncRNA processing (G0:0034470), rRNA metabolic process (G0:0016072), which indicates that cells in C3
are mainly in phase G2 when macromolecules for multiplication and cell growth are produced, preparing
for the next M stage. The top GO terms of CO are mitotic cell cycle process (G0:1903047), mitotic cell
cycle (GO:0000278), cell cycle process (G0:0022402), cell cycle (G0:0007049) and mitotic spindle
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organization (G0:0007052), which indicates CO refers to cells in M (Mitosis) phase when cells give birth
to new progeny cell. C4 are enriched with GO terms of negative regulation of various processes, including
negative regulation of cellular process (G0:0048523), negative regulation of biological process
(G0O:0048519), negative regulation of signal transduction (G0:0009968), negative regulation of signaling
(G0:0023057), etc, indicating the cells are in G1 phase with a rest for preparation of next cell cycle.

Despite that G1 phase is very complicated, including a variety of biological processes (40), the top
differential expression genes can further confirm CCST's prediction (Tab. $5). MALAT1 is the most
differentially highly expressed gene in C4 with p value of 2.74e-40. It has been proved that MALAT1
control the gene expression and cell cycle progression in G1/S phase when cell makes decision to enter
either S or GO (41, 42). The second significant gene is ABI2 with p value of 4.77e-20. ABI2 is also found to
play a promotive role in promoting G1-to-S phase transition as well (43). Additionally, ABI2 phosphatase
is a negative regulator of ABA signaling (44) that can prevent DNA replication, keeping the cells in the G1
stage (45). All the above analyses suggest that cells in C4 are in G1 phase.

In addition, CDT1 and CDC6 are essential for the initiation of DNA replication and are well-known gene
markers for cell cycle stage. It was shown (46, 47) that expression of CDT1 increases from a very low
level in G1 and starts to decrease after entering S stage, which is consistent with the mean trend of CDT1
of our predicted cell cycle stage (Fig. 3e). The STD trend form CCST's prediction shows that the
expression in C4 (G1) varies most, which is supported by the recent study as well (46). We also find
similar results for CDC6, which further validate our predictions. As a result, CCST can identify all four cell
cycle phases and C1, C3, CO and C4 belong to phase S, G2, M and G1 respectively.

For comparison, we first evaluate clustering result with only gene expression. We do the same analysis
based on the cell grouping performed in the MERFISH paper using PCA and graph-based Louvain
clustering (5). We download that top DE genes of all five clustered groups, and carry out GO term
enrichment analysis. As can be seen in Fig. S3, these enriched GO terms are much less significant and
more overlapped, which results in difficulties to distinguish different cell cycle phases.

We then further compare with five recently developed spatial clustering methods, Giotto (28) (Fig. S3),
stLearn (29) (Fig. S4), SEDR (33) (Fig. S7), BayesSpace (31) (Fig. S8) and SpaGCN (32) (Fig. S9), and two
single cell expression analyzing approaches without taking spatial information into consideration, which
are the methods used in MERFISH study (5) (Fig. S5) and Seurat (21) (Fig. S6). In Giotto's results, CO and
C2 are mainly related with mitotic cell cycle, while C3 has much less significant GO terms, thus it is hard
to interpret from the perspective of cell cycle. In stLearn’s results, CO is related with DNA replication, both
C1 and C3 are highly related with mitotic cell cycle, while no GO term is discovered on C2. In SEDR’s
results, only 2 clusters are associated with GO terms and None of them are about cell cycle. In SpaGCN
results, only C1 and C3 are relevant to cell cycles and the Go terms are mixed. The clustering results still
cannot be used to discover the full cell cycle phases. In BayesSpace’s results, there are four clustered cell
groups associated with corresponding cell cycle GO terms, however, the result has less spatial
neighborhood structure and the GO terms are less significant, compared to CCST. We also quantify the
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comparison of CCST with these methods by calculating the overlap ratio of GO terms associated with
each cluster discovered by methods (Fig. 3@). As can be seen, CCST has the lowest ratio with a median
value of 0, further indicating the outperformance of CCST.

CCST outperforms prior methods on ST datasets

The first ST data we used is the LIBD human dorsolateral prefrontal cortex (DLPFC) including the 10x
Genomics Visium spatial transcriptomics and manually annotated layers. There are 12 samples in
DLFPC, each of which consists of up to six cortical layers and the white matter. For Seurat, Giotto,
stLearn, SpaGCN, BayesSpace and SEDR, recommended default parameters are adopted. To measure the
consistency between the clustering labels and reference labels, ARl is employed to compare the
performance of different clustering algorithms, as shown in Fig. 4a. Spots in the same biological layer in
brain should be spatially close to each other while separated between different layers. To quantify such
property, local Inverse Simpson'’s Index (LISI) (39) is introduced (33). LISI is a metric for accessing the
local diversity of cells. A lower LISI indicates that clusters are better spatially separated. See the last two
sections of supplementary materials for details in the implementation of ARl and LISI. The LISI is shown
in Fig. 4b, and the annotation and cluster results of each method on slice 151674 of DLPFC is shown in
Fig. 4d. As can be seen, CCST is the closest to annotated layer segmentation numerically, and its cluster
boundary is significantly smoother than other approaches visually.

CCST is also tested on more one ST data, the 10x Visium spatial transcriptomic data of human breast
cancer. We utilize the manual annotation provided in SEDR (33). The tissue is segmented into 20 regions
and grouped into 4 main morphotypes: Ductal Carcinoma in Situ/Lobular Carcinoma in Situ (DCIS/LCIS),
healthy tissue (Healthy), Invasive Ductal Carcinoma (IDC), and tumor surrounding regions with low
features of malignancy (Tumor edge). Here we only compare ARl rather than LISI in Fig. 4¢, because
tumor tissues are highly heterogeneous. The annotation and cluster result of each method is shown in
Fig. 4e. Again, CCST cluster has smoother boundary, while clusters obtained by other methods are more
fragmented with spot-level noise.

CCST finds novel sub cell types from seqFISH+ mouse OB dataset

In addition to ab initio discovering cell groups, next we show that CCST can also be used to find novel
sub cell type and interactions from manually curated cell type annotation based on prior biological
knowledge. For this we firstly select the seqFISH+ dataset from mouse OB. We apply CCST to all 11 cell
types to discover novel subpopulation within each annotated cell type. With the same hyperparameter
settings as for MERFISH dataset, the embedding vector generated by GCN is fed into PCA, and the top 30
principal components are utilized to divide each annotated cell type group into two clusters to discover
potential sub cell types.

We first analyze the sub cell type result of interneuron cells in Fig. 5. Based on the spatial embedding, the
annotated interneuron cells can be clearly divided into two subgroups in the reduced two-dimension
UMAP space (Fig. 5a). Bar plots of neighbor enrichment ratios for the two subgroups indicate that the
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two subset cells have very different micro-environments (Fig. 5b). Specifically, cells of C1 tend to be
spatially proximal to Mitral/Tufted cells, endothelial and Olfactory ensheathing cells. We then did GO
term analysis based on the top 200 differentially highly expressed genes in CO (Fig. 5¢) and C1 (Fig. 5d).
For CO, the top enriched GO terms are relevant to neural functions, like anterograde trans-synaptic
signaling (G0:0098916), secretion by cell (G0:0032940), neurotransmitter transport (G0:0006836), export
from cell (GO:0140352) and signal release from synapse (G0:0099643). Such GO results indicate that
interneuron cells of CO are functional mature neural cells that can communicate with other neural cells. In
contrast, the top GO terms for C1 are not quite related to neural functions, instead, they include regulation
of multicellular organismal process (G0:0051239), nervous system process (G0:0050877), regulation of
localization (G0:0032879) and regulation of cell migration (G0:0030334). In addition, the most
significantly high expressed gene in C1 is NRSN1 (p=1.67e-35), which may be important for neural
organelle transport, nerve growth and neurite extension (48). Such results indicate that interneuron cell
can be divided into two subgroups: one is functional mature neural cell group, and the other one is group
of cells still in development, including localization and migration, which are interacting with its neighbor
cells, like Mitral/Tufted or endothelial cells. Interestingly, such sub cell type discovery and its interaction
are validated by a recent study that, a subclass of interneuron, GABAergic interneuron migration can be
regulated via embryonic forebrain endothelial cells (49), and partial loss of GABA release from endothelial
cells can still impair long-distance migration and localization of interneurons during embryogenesis.

Distinct microenvironment settings of two cell subgroups within one annotated cell type are also found
for astrocyte, neuroblast, and endothelial cells (Fig. 5). The CO subgroup of astrocyte cells are more
spatially proximal to interneuton, neuroblast, etc (Fig. 6a), and its DE genes are mainly enriched in GO
terms related to visual and learning functions, while C1 subgroup of astrocytes has GO terms related to
cell interaction (Figs. 6b and 6c¢). For neuroblast cells, we find similar pattern to that of interneuron cells.
The C1 of neuroblast are more spatially close to Mitral/Tufted or endothelial cells compared to CO (Fig.
6d). The top GO terms of CO are relevant to neural functions, like regulation of trans-synaptic signaling
(G0:0099177) , regulation of synapse structure or activity (G0:0050803) and modulation of chemical
synaptic transmission (G0:0050804), etc, indicating that CO are functional mature neural cell, while C1 is
unmatured and related to cell adhesion (GO:0007155) according to its GO terms (Fig. 6e and 6f).
Moreover, the most significantly high expressed gene in C1 is EOMES (p= 5.57e-39), which is essential for
the central nervous system in vertebrates (50). The sub neuroblast discovery and its interaction are also
supported by a very recent study (51). It was shown that there are direct contacts between endothelial
cells and neuroblasts, and the authors further argue that endothelial cytonemes only contact part of
neuroblasts, allowing a scattered pattern of cell-cycle-arrested neuroblasts between other cells with
proliferative capacities. As a result, our clustering results provide more detailed complex communication
mechanism that involves interneuron, neuroblast and endothelial cells together, which is validated by
recent studies. For endothelial cells, we also find two sub cell types with different micro-environments.
Specifically, we find GO terms associated with synaptic signaling and cell-cell signaling for CO group (Fig.
6g and h). In addition, we do neighbor enrichment analysis of all the four cell types, and find more
complex cell interactions with sub cell type resolution (Fig. S10).
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For comparison, we perform CCST with A = 1 where no spatial structure information is taken into
consideration. However, no significant GO term is found for all sub cell type groups, which indicates that
spatial information is essential to find novel sub cell types.

CCST finds novel sub cell types from seqFISH+ mouse cortex dataset

We also perform the analysis for another seqFISH+ dataset from 913 cells in mouse cortex which are
assigned to 10 cell types. Sub cell types of four annotated cell categories can be found for astrocyte,
excitatory neuron cells, endothelial cells and neural Stem cells respectively (Fig. S11). For astrocyte cells,
cells of CO tend to be spatially proximal to excitatory neuron, while cells of C1 do not. The GO terms of CO
are relevant to cell-cell interaction, like synaptic signaling (G0:0099536), neurotransmitter transport
(G0:0006836), secretion (G0:0046903), export from cell (G0:0140352), signal release (G0:0023061) and
signal release from synapse (G0:0099643). Such GO results indicate that CO are more likely to be active
to communicate with other cells, like excitatory neuron. In contrast, much fewer DE genes are found in CT,
which are not enough to get any significant GO term. The interaction between excitatory and astrocyte
cells has been studied by recent studies. Excitatory neurons release the neurotransmitter glutamate,
which is the main excitatory neurotransmitter (52). To maintain the metabolism of glutamate, the de novo
synthesis of glutamine in astrocytes is essential (53, 54). Our results indicate that only part of astrocyte
cells is responsible for glutamatergic neurotransmission in brain. We also perform CCST with A = 1 where
no spatial structure information is taken into consideration. As is shown in Fig. S12, subpopulation can
only be found for Astrocyte cells, rather than Excitatory neuron, Endothelial and Neural Stem cells. The
less significant GO term results of top DE genes in the subgroups further indicate that spatial information
is essential to find novel sub cell types.

Discussions

Cell state or type identification is a key biological question, and the analysis of it is always one key step
for high-throughput single cell omics data. The recently developed spatial transcriptomics data can
provide both gene expression profiling and spatial location of single cells, opening the door how to
identify cells using both molecular information in cell and spatial information out of cell.

It has been shown that spatial location is deeply coupled with biological insights including cell state, type
and their interactions in micro-environment. For example, cultured cells of same cell cycle phase would be
more likely to resident together because neighbor cells may come from one parent cell, and several cell
types are known to interact and co-locate with each other. However, most existing studies of spatial
transcriptomics data rely on only the gene expression information, using expression level of scRNA-seq
data or tools developed for scRNA-seq, and cannot utilize spatial information efficiently. Several recently
developed spatial clustering methods simply assume that the same cell group is spatially close to each
other and did not take into consideration the complex global cell group interactions across the tissue
sample. To make full use of spatial information and gene expression level, here we introduce CCST, which
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uses unsupervised graph convolution network to learn cell embedding representation based on graph
extracted from spatial transcriptomics data.

Results of different spatial transcriptomics datasets show CCST's power. CCST can greatly improve ab
initio cell clustering over existing methods from in vitro MERFISH dataset of cultured cell. Firstly, CCST's
prediction has more spatial structure. secondly, CCST can clearly recognize cell groups of all four cell
cycle phases. Thirdly, it can find the spatial proximity between adjacent phases. In addition, for in vivo
dataset, CCST can also be used to find novel sub cell types with different biological functions and their
interactions with biological insights from seqFISH+ datasets of mouse cortex and OB tissues, which is
supported by DE gene analysis, GO term enrichment and other literatures. In the quantitative comparison,
CCST obtained the highest ARI and lowest LISI on both ST datasets compared to all prior clustering
approaches. So CCST can help understand cell identity, interaction and spatial organization from spatial
data.

CCST is implemented in Python. All the source code and spatial data can be downloaded from the
supporting website, https://github.com/xiaoyeye/CCST.

Methods

1, Dataset

Recently, with the cutting-edge technology in imaging the transcriptome in situ with high
accuracy, multiple high-throughput spatial expression datasets are available for analyzing
cells based on both gene expression and spatial distribution. We take experiments on two
benchmark datasets. The first one is obtained by multiplexed error-robust fluorescence in
situ hybridization (MERFISH) (5). consisting of the expression of 10,050 genes in 1,368
human osteosarcoma cells from 3 batches (replicates). The second is obtained by
sequential fluorescence in situ hybridization (seqFISH+) (10). The seqFISH+ dataset from
mouse cortex contains the expression of 10,000 genes in 913 cells assigned to 10 cell types,
and seqFISH+ dataset from MOB contains the expression of 10,000 genes in 2,050 cells
assigned to 11 cell types. Additionally, two ST datasets are utilized in our experiment,
which are human dorsolateral prefrontal cortex (DLPFC) and 10x Visium spatial
transcriptomics data of human breast cancer. There are 12 samples in DLFPC, each of
which consists of up to six cortical layers and the white matter. In the annotation of human
breast cancer provided by SEDR (33), the tissue is segmented to 20 areas.

2, Graph construction

A graph can be described by two matrices, an adjacent matrix for representing the graph
structure and a feature matrix for representing node attributes. To represent the spatial
information among cells, an undirected graph is constructed for each field of view, where
cell is represented as node and edge connects pair of cells spatially close to each other. For
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this purpose, we firstly calculate the distance over each cell pair 4, where ! and / are the

indices of two cells. Utilizing a proper threshold @:«s, we can obtain the adjacent matrix

Ao € RV, where N is the number of cells, ® =1 if 4y < dwwes and % =0 otherwise. The
constructed graph on MERFISH is illustrated in Fig. 2(d). To balance the weight between
spatial information and the gene expression of an individual cell, we introduce a

hyperparameter 4 to generate the hybrid adjacent matrix.

A=2A%I+(1—Ddo (1)

where € B ig an identity matrix. We conduct experiments with various 4 to better explore

the influence of spatial information.

Similar to (5, 10), a series of preprocessing steps are introduced on the raw gene count
data to extract nodes features, including filtering out lowly expressed genes and lowly
variable genes, normalizing the counts per cell, and batch correction if necessary.
Here, we mainly follow the preprocessing strategy given by (5). Since the MERFISH
dataset is collected from 3 replicates, batch correction is required. After removing the
lowly expressed genes whose expression is fewer than 1 count per cell on average, we
employ Scanorama (55) to correct batch effect. Then we normalize the corrected
expressions following equation 2. Finally, the lowly variable genes whose variance of

normalized expression is lower than 1 are dropped.
expression;; = _county; % 10000 (2)

Y ¥;count;
where ! represents cell { and / represents gene /.
On the seqFISH+ and two ST datasets, we adopt similar preprocessing steps without the
batch correction that is not needed.
3, Node embedding and clustering
With the recent progress in graph convolutional network (GCN), several approaches to
learn node representations from graph-structured data have been proposed. Here, we
utilize an unsupervised graph embedding method, Deep Graph Infomax (DGI) (37).
Different from previous approaches based on random walk, DGI relies on maximizing
mutual information between local representations and global summaries of graphs. In
GCN, nodes are embedded by repeatedly aggregating the features of neighbor nodes. The
extracted local feature contains the information of a subgraph centered on each individual
node. To better explore the high-level feature of the whole graph, DGI is designed to learn
an encoder by maximizing mutual information over patches. This feature contains not only
local features, but also global features.
The input to DGI is the hybrid adjacent matrix 4 €
X ={x1x2 ..xn}, where N is the number of nodes, * € " represents the features of node { and ¥
is the number of node features. In the vanilla DGI and majority applications of GCN, the

RY*" and a set of node features,
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adjacent matrix A is assumed to be filled with binary numbers, i.e., 4 =1 if there exists an

edge between node ! and / in the graph and ? =9 otherwise. Here we further apply DGI to
the weighted Graph constructed with hybrid adjacent matrix.

The objective of DGI is learning an encoder £ that maps input feature and adjacent matrix
to embedding space: E(X:4) = H = { hy, hz, ... hv } where # represents high-level
representations, % € B* for each node { and M is the number of embedding features. The
encoder is composed of four graph convolutional layers for passing massage over
neighbored nodes with a Parametric Rectified Linear Unit (PReLU) as the activation

function. The th graph convolutional layer is:
HU+1) — GCN':”(H(”,A} = g(ﬁ—lfzjﬁ—lfzhr(l]wm) (3)

where H' and """ are the input and output of the !th graph convolutional layer, W is the
weight matrix used for feature transformation. A is the adjacent matrix after being added
by self-loops,

A=A+1LI1€RVYN (4)

ﬁi:’ = Z"qz‘j (5)

The PReLU function is:

x, ifx =0

PRelU(x) = [a.x otherwise (6)

where ¢ is a learnable parameter.

The global representation ¥ is obtained by mapping from the local representations with a
readout function : = S(E(X,4)) and 5: R"** = R With the local and global features, a
discriminator £: RY x #¥= R is introduced to evaluate how much graph level information is
contained by a local patch. The higher P(h 5) indicates, the patches are more likely to be
contained within the summary. For training the discriminator, we generate negative
samples by a corruption function €: 4= €(4), where the edges in the graph are
reconstructed randomly. Then we obtain the local representations ki for negative samples
as well. The full objective is:

L= ExallogD (hss)] + Ex[log(1 D (h,,))] ™

By maximizing the approximate representation of mutual information between f and ¥, DGI
outputs the node embedding that contains structural information of the graph.

PCA is performed on the obtained embedding vector for dimension reduction. Clustering
algorithms UMAP is employed on top principal components to discover novel cell groups or
cell subpopulations.

4, Differential gene expression analysis
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To verify different biological functions of each clustered cell subpopulation, we find
differentially expressed (DE) genes that are expressed highly in each subpopulation by
Mann-Whitney U Test for all cell types. With the top 200 DE genes and the whole gene list in
the corresponding dataset as the background, we carried out Gene Ontology (GO) term
enrichment analysis for each subpopulation to construct a functional enrichment profile.
We also take GO term analysis on the differential expressed genes of the five clusters
discovered by (5). The results are shown in supplementary materials. the FDR values of
those GO terms obtained in their approaches are not as low as those got by ours. In
addition, the significantly related GO terms are mixed up in there 5 clusters.
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Figures

Figure 1

The framework of our subpopulation discovering algorithm. Steps in our approach: (a) Graph
construction. From distance matrix to adjacent matrix. 1.2 Filter out low expression genes and low
variance genes. 1.3 Batch correction (optional). 1.4 Gene expression normalization. 1.5 Constructing
hybrid adjacent matrix with various lambda. (b) Deep Graph Infomax (DGI) for node embedding with
spatial information and principal component analysis (PCA) for further dimension reduction. (c) Node
clustering for discovering novel cell subpopulations. (d) Differential gene (DE) expression analysis with
Mann-Whitney U Test and GO analysis for differential gene expression.
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Figure 2

The spatial distribution of cells in different clustered groups on MERFISH dataset. (a-c) the spatial
distributions of cells on the three batches (replicates), where cells in C0O to C5 are represented by points in
different colors. (d) The constructed graph. Those nodes without neighbors are not shown on the graph.
(e-g) The bar plots of neighbor enrichment ratios for C0, C1, C3 and C4 respectively.
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Figure 3

CCST can identify four cell cycle phases clearly. (a-d) Top GO terms of clustered cell groups of C1, C3, CO
and C4, corresponding to S, G2, M and G1 phase respectively. (e, f) The mean and standard deviation
(std) of CDT1 and CDC6. (g) A GO result comparison of our CCST with prior methods, including
BayesSpace, Gitto, SpaGCN, Seurat and MERFISH pipeline. Stlearn and SEDR are not illustrated in the
figure, because only part of clusters given by them are associated with GO terms.
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Figure 4

CCST outperforms on two annotated datasets. (a) Barplot of adjusted rand index (ARI) on 12 samples
from DLPFC (higher the better). (b) Barplot of local inverse Simpson’s index (LISI) on 12 samples from
DLPFC (lower the better). (c) Adjusted rand index (ARI) on 10x Visium spatial transcriptomics data of
human breast cancer. (d) Annotation and cluster labels obtained by CCST and prior methods, including
BayesSpace, SpaGCN, SEDR, stLearn, Giotto and Seurat, on sample 151674 of DLPFC. (e) Annotation
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and cluster labels obtained by CCST and prior methods on 10x Visium spatial transcriptomics data of
human breast cancer.

Figure 5

Cell subgroup results on interneuron cells of seqFISH+ MOB dataset. (a) The two-dimension UMAP
clustering result with Silhouette coefficient. (b) Bar plot of neighbor enrichment ratios for two subgroups.
Here, the cells of interneurons, are excluded in the histogram for better demonstration of distribution
difference. (c, d) The significant GO terms based on the top 200 differentially highly expressed genes for
CO and C1 respectively.
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Figure 6

Neighbor enrichment ratios and GO term analysis on each sub cell type of astrocytes, endothelial cells
and neural stem cells of seqFISH+ MOB dataset. (a-c) Results on astrocytes. (d-f) Results on endothelial
cells. (g, h) Results on neural stem cells where there is no significant GO term for C1.
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