(1) Chakraborty, S.; Banerjee, S.; Raina, M.; Haldar, S. Force-Directed “Mechanointeractome” of Talin–Integrin. Biochemistry 2019, 58 (47), 4677–4695. https://doi.org/10.1021/acs.biochem.9b00442.
(2) Baxter, N. J.; Zacharchenko, T.; Barsukov, I. L.; Williamson, M. P. Pressure-Dependent Chemical Shifts in the R3 Domain of Talin Show That It Is Thermodynamically Poised for Binding to Either Vinculin or RIAM. Structure 2017, 25 (12), 1856-1866.e2. https://doi.org/10.1016/j.str.2017.10.008.
(3) Calderwood, D. A.; Ginsberg, M. H. Talin Forges the Links between Integrins and Actin. Nature Cell Biology 2003, 5 (8), 694–696. https://doi.org/10.1038/ncb0803-694.
(4) Brakebusch, C.; Fässler, R. The Integrin–Actin Connection, an Eternal Love Affair. The EMBO Journal 2003, 22 (10), 2324–2333. https://doi.org/10.1093/emboj/cdg245.
(5) Nayal, A.; Webb, D. J.; Horwitz, A. F. Talin: An Emerging Focal Point of Adhesion Dynamics. Current Opinion in Cell Biology 2004, 16 (1), 94–98. https://doi.org/10.1016/j.ceb.2003.11.007.
(6) Goult, B. T.; Yan, J.; Schwartz, M. A. Talin as a Mechanosensitive Signaling Hub. J Cell Biol 2018, 217 (11), 3776–3784. https://doi.org/10.1083/jcb.201808061.
(7) Han, S. J.; Azarova, E. V.; Whitewood, A. J.; Bachir, A.; Guttierrez, E.; Groisman, A.; Horwitz, A. R.; Goult, B. T.; Dean, K. M.; Danuser, G. Pre-Complexation of Talin and Vinculin without Tension Is Required for Efficient Nascent Adhesion Maturation. eLife 2021, 10, e66151. https://doi.org/10.7554/eLife.66151.
(8) Yao, M.; Goult, B. T.; Klapholz, B.; Hu, X.; Toseland, C. P.; Guo, Y.; Cong, P.; Sheetz, M. P.; Yan, J. The Mechanical Response of Talin. Nature Communications 2016, 7 (1), 11966. https://doi.org/10.1038/ncomms11966.
(9) Yao, M.; Goult, B. T.; Chen, H.; Cong, P.; Sheetz, M. P.; Yan, J. Mechanical Activation of Vinculin Binding to Talin Locks Talin in an Unfolded Conformation. Scientific Reports 2014, 4 (1), 4610. https://doi.org/10.1038/srep04610.
(10) Goult, B. T.; Zacharchenko, T.; Bate, N.; Tsang, R.; Hey, F.; Gingras, A. R.; Elliott, P. R.; Roberts, G. C. K.; Ballestrem, C.; Critchley, D. R.; Barsukov, I. L. RIAM and Vinculin Binding to Talin Are Mutually Exclusive and Regulate Adhesion Assembly and Turnover *. Journal of Biological Chemistry 2013, 288 (12), 8238–8249. https://doi.org/10.1074/jbc.M112.438119.
(11) Langer, T.; Lu, C.; Echols, H.; Flanagan, J.; Hayer, M. K.; Hartl, F. U. Successive Action of DnaK, DnaJ and GroEL along the Pathway of Chaperone-Mediated Protein Folding. Nature 1992, 356 (6371), 683–689. https://doi.org/10.1038/356683a0.
(12) Avellaneda, M. J.; Koers, E. J.; Naqvi, M. M.; Tans, S. J. The Chaperone Toolbox at the Single‐molecule Level: From Clamping to Confining. Protein Sci 2017, 26 (7), 1291–1302. https://doi.org/10.1002/pro.3161.
(13) Fujita, Y.; Ohto, E.; Katayama, E.; Atomi, Y. AlphaB-Crystallin-Coated MAP Microtubule Resists Nocodazole and Calcium-Induced Disassembly. J Cell Sci 2004, 117 (Pt 9), 1719–1726. https://doi.org/10.1242/jcs.01021.
(14) Pereira, M. B. M.; Santos, A. M.; Gonçalves, D. C.; Cardoso, A. C.; Consonni, S. R.; Gozzo, F. C.; Oliveira, P. S.; Pereira, A. H. M.; Figueiredo, A. R.; Tiroli-Cepeda, A. O.; Ramos, C. H. I.; de Thomaz, A. A.; Cesar, C. L.; Franchini, K. G. ΑB-Crystallin Interacts with and Prevents Stress-Activated Proteolysis of Focal Adhesion Kinase by Calpain in Cardiomyocytes. Nature Communications 2014, 5 (1), 5159. https://doi.org/10.1038/ncomms6159.
(15) Bullard, B.; Ferguson, C.; Minajeva, A.; Leake, M. C.; Gautel, M.; Labeit, D.; Ding, L.; Labeit, S.; Horwitz, J.; Leonard, K. R.; Linke, W. A. Association of the Chaperone AlphaB-Crystallin with Titin in Heart Muscle. J Biol Chem 2004, 279 (9), 7917–7924. https://doi.org/10.1074/jbc.M307473200.
(16) Shimizu, M.; Tanaka, M.; Atomi, Y. Small Heat Shock Protein ΑB-Crystallin Controls Shape and Adhesion of Glioma and Myoblast Cells in the Absence of Stress. PLOS ONE 2016, 11 (12), e0168136. https://doi.org/10.1371/journal.pone.0168136.
(17) Collier, M. P.; Benesch, J. L. P. Small Heat-Shock Proteins and Their Role in Mechanical Stress. Cell Stress Chaperones 2020, 25 (4), 601–613. https://doi.org/10.1007/s12192-020-01095-z.
(18) Chakraborty, S.; Chaudhuri, D.; Chaudhuri, D.; Singh, V.; Banerjee, S.; Haldar, S. Real-Time Microfluidics-Magnetic Tweezers Connects Conformational Stiffness with Energy Landscape by a Single Experiment. bioRxiv 2020, 2020.06.09.142257. https://doi.org/10.1101/2020.06.09.142257.
(19) Haining, A. W. M.; von Essen, M.; Attwood, S. J.; Hytönen, V. P.; del Río Hernández, A. All Subdomains of the Talin Rod Are Mechanically Vulnerable and May Contribute To Cellular Mechanosensing. ACS Nano 2016, 10 (7), 6648–6658. https://doi.org/10.1021/acsnano.6b01658.
(20) Tapia-Rojo, R.; Alonso-Caballero, Á.; Fernández, J. M. Talin Folding as the Tuning Fork of Cellular Mechanotransduction. Proceedings of the National Academy of Sciences of the United States of America 2020, 117 (35), 21346–21353. https://doi.org/10.1073/pnas.2004091117.
(21) Tapia-Rojo, R.; Alonso-Caballero, A.; Fernandez, J. M. Direct Observation of a Coil-to-Helix Contraction Triggered by Vinculin Binding to Talin. Science Advances 2020, 6 (21), eaaz4707. https://doi.org/10.1126/sciadv.aaz4707.
(22) Popa, I.; Rivas-Pardo, J. A.; Eckels, E. C.; Echelman, D. J.; Badilla, C. L.; Valle-Orero, J.; Fernández, J. M. A HaloTag Anchored Ruler for Week-Long Studies of Protein Dynamics. J. Am. Chem. Soc. 2016, 138 (33), 10546–10553. https://doi.org/10.1021/jacs.6b05429.
(23) Eckels, E. C.; Chaudhuri, D.; Chakraborty, S.; Echelman, D. J.; Haldar, S. DsbA Is a Redox-Switchable Mechanical Chaperone. bioRxiv 2021, 310169. https://doi.org/10.1101/310169.
(24) Schuler, B.; Lipman, E. A.; Eaton, W. A. Probing the Free-Energy Surface for Protein Folding with Single-Molecule Fluorescence Spectroscopy. Nature 2002, 419 (6908), 743–747. https://doi.org/10.1038/nature01060.
(25) Kuo, T.-L.; Garcia-Manyes, S.; Li, J.; Barel, I.; Lu, H.; Berne, B. J.; Urbakh, M.; Klafter, J.; Fernández, J. M. Probing Static Disorder in Arrhenius Kinetics by Single-Molecule Force Spectroscopy. PNAS 2010, 107 (25), 11336–11340. https://doi.org/10.1073/pnas.1006517107.
(26) Li, J.; Chen, G.; Guo, Y.; Wang, H.; Li, H. Single Molecule Force Spectroscopy Reveals the Context Dependent Folding Pathway of the C-Terminal Fragment of Top7. Chem. Sci. 2021, 12 (8), 2876–2884. https://doi.org/10.1039/D0SC06344D.
(27) Chen, H.; Yuan, G.; Winardhi, R. S.; Yao, M.; Popa, I.; Fernandez, J. M.; Yan, J. Dynamics of Equilibrium Folding and Unfolding Transitions of Titin Immunoglobulin Domain under Constant Forces. J. Am. Chem. Soc. 2015, 137 (10), 3540–3546. https://doi.org/10.1021/ja5119368.
(28) Berkovich, R.; Garcia-Manyes, S.; Klafter, J.; Urbakh, M.; Fernández, J. M. Hopping around an Entropic Barrier Created by Force. Biochem Biophys Res Commun 2010, 403 (1), 133–137. https://doi.org/10.1016/j.bbrc.2010.10.133.
(29) Pierse, C. A.; Dudko, O. K. Kinetics and Energetics of Biomolecular Folding and Binding. Biophysical Journal 2013, 105 (9), L19–L22. https://doi.org/10.1016/j.bpj.2013.09.023.
(30) Guo, S.; Tang, Q.; Yao, M.; You, H.; Le, S.; Chen, H.; Yan, J. Structural–Elastic Determination of the Force-Dependent Transition Rate of Biomolecules. Chem. Sci. 2018, 9 (27), 5871–5882. https://doi.org/10.1039/C8SC01319E.
(31) Mayer, M. P.; Bukau, B. Hsp70 Chaperones: Cellular Functions and Molecular Mechanism. Cell Mol Life Sci 2005, 62 (6), 670–684. https://doi.org/10.1007/s00018-004-4464-6.
(32) Haldar, S.; Tapia-Rojo, R.; Eckels, E. C.; Valle-Orero, J.; Fernandez, J. M. Trigger Factor Chaperone Acts as a Mechanical Foldase. Nature Communications 2017, 8 (1), 668. https://doi.org/10.1038/s41467-017-00771-6.
(33) Yan, J.; Yao, M.; Goult, B. T.; Sheetz, M. P. Talin Dependent Mechanosensitivity of Cell Focal Adhesions. Cell Mol Bioeng 2015, 8 (1), 151–159. https://doi.org/10.1007/s12195-014-0364-5.
(34) Mandal, S. S.; Merz, D. R.; Buchsteiner, M.; Dima, R. I.; Rief, M.; Žoldák, G. Nanomechanics of the Substrate Binding Domain of Hsp70 Determine Its Allosteric ATP-Induced Conformational Change. PNAS 2017, 114 (23), 6040–6045. https://doi.org/10.1073/pnas.1619843114.
(35) Mashaghi, A.; Bezrukavnikov, S.; Minde, D. P.; Wentink, A. S.; Kityk, R.; Zachmann-Brand, B.; Mayer, M. P.; Kramer, G.; Bukau, B.; Tans, S. J. Alternative Modes of Client Binding Enable Functional Plasticity of Hsp70. Nature 2016, 539 (7629), 448–451. https://doi.org/10.1038/nature20137.
(36) Bauer, D.; Meinhold, S.; Jakob, R. P.; Stigler, J.; Merkel, U.; Maier, T.; Rief, M.; Žoldák, G. A Folding Nucleus and Minimal ATP Binding Domain of Hsp70 Identified by Single-Molecule Force Spectroscopy. PNAS 2018, 115 (18), 4666–4671. https://doi.org/10.1073/pnas.1716899115.
(37) Avellaneda, M. J.; Franke, K. B.; Sunderlikova, V.; Bukau, B.; Mogk, A.; Tans, S. J. Processive Extrusion of Polypeptide Loops by a Hsp100 Disaggregase. Nature 2020, 578 (7794), 317–320. https://doi.org/10.1038/s41586-020-1964-y.
(38) Kityk, R.; Kopp, J.; Sinning, I.; Mayer, M. P. Structure and Dynamics of the ATP-Bound Open Conformation of Hsp70 Chaperones. Molecular Cell 2012, 48 (6), 863–874. https://doi.org/10.1016/j.molcel.2012.09.023.
(39) Schlecht, R.; Erbse, A. H.; Bukau, B.; Mayer, M. P. Mechanics of Hsp70 Chaperones Enables Differential Interaction with Client Proteins. Nat Struct Mol Biol 2011, 18 (3), 345–351. https://doi.org/10.1038/nsmb.2006.
(40) Bechtluft, P.; van Leeuwen, R. G. H.; Tyreman, M.; Tomkiewicz, D.; Nouwen, N.; Tepper, H. L.; Driessen, A. J. M.; Tans, S. J. Direct Observation of Chaperone-Induced Changes in a Protein Folding Pathway. Science 2007, 318 (5855), 1458–1461. https://doi.org/10.1126/science.1144972.
(41) Mayer, M. P.; Rüdiger, S.; Bukau, B. Molecular Basis for Interactions of the DnaK Chaperone with Substrates. Biol Chem 2000, 381 (9–10), 877–885. https://doi.org/10.1515/BC.2000.109.
(42) Gässler, C. S.; Buchberger, A.; Laufen, T.; Mayer, M. P.; Schröder, H.; Valencia, A.; Bukau, B. Mutations in the DnaK Chaperone Affecting Interaction with the DnaJ Cochaperone. Proc Natl Acad Sci U S A 1998, 95 (26), 15229–15234. https://doi.org/10.1073/pnas.95.26.15229.
(43) Montgomery, D. L.; Morimoto, R. I.; Gierasch, L. M. Mutations in the Substrate Binding Domain of the Escherichia Coli 70 Kda Molecular Chaperone, DnaK, Which Alter Substrate Affinity or Interdomain Coupling11Edited by M. Gottesman. Journal of Molecular Biology 1999, 286 (3), 915–932. https://doi.org/10.1006/jmbi.1998.2514.
(44) Pellecchia, M.; Montgomery, D. L.; Stevens, S. Y.; Vander Kooi, C. W.; Feng, H.; Gierasch, L. M.; Zuiderweg, E. R. P. Structural Insights into Substrate Binding by the Molecular Chaperone DnaK. Nat Struct Mol Biol 2000, 7 (4), 298–303. https://doi.org/10.1038/74062.
(45) Laufen, T.; Mayer, M. P.; Beisel, C.; Klostermeier, D.; Mogk, A.; Reinstein, J.; Bukau, B. Mechanism of Regulation of Hsp70 Chaperones by DnaJ Cochaperones. PNAS 1999, 96 (10), 5452–5457. https://doi.org/10.1073/pnas.96.10.5452.
(46) Kellner, R.; Hofmann, H.; Barducci, A.; Wunderlich, B.; Nettels, D.; Schuler, B. Single-Molecule Spectroscopy Reveals Chaperone-Mediated Expansion of Substrate Protein. PNAS 2014, 111 (37), 13355–13360. https://doi.org/10.1073/pnas.1407086111.
(47) Nunes, J. M.; Mayer-Hartl, M.; Hartl, F. U.; Müller, D. J. Action of the Hsp70 Chaperone System Observed with Single Proteins. Nature Communications 2015, 6 (1), 6307. https://doi.org/10.1038/ncomms7307.
(48) Imamoglu, R.; Balchin, D.; Hayer-Hartl, M.; Hartl, F. U. Bacterial Hsp70 Resolves Misfolded States and Accelerates Productive Folding of a Multi-Domain Protein. Nature Communications 2020, 11 (1), 365. https://doi.org/10.1038/s41467-019-14245-4.
(49) Schröder, H.; Langer, T.; Hartl, F. U.; Bukau, B. DnaK, DnaJ and GrpE Form a Cellular Chaperone Machinery Capable of Repairing Heat-Induced Protein Damage. EMBO J 1993, 12 (11), 4137–4144.
(50) Szabo, A.; Langer, T.; Schröder, H.; Flanagan, J.; Bukau, B.; Hartl, F. U. The ATP Hydrolysis-Dependent Reaction Cycle of the Escherichia Coli Hsp70 System DnaK, DnaJ, and GrpE. Proc Natl Acad Sci U S A 1994, 91 (22), 10345–10349. https://doi.org/10.1073/pnas.91.22.10345.
(51) Mayer, M. P. Hsp70 Chaperone Dynamics and Molecular Mechanism. Trends Biochem Sci 2013, 38 (10), 507–514. https://doi.org/10.1016/j.tibs.2013.08.001.
(52) Clerico, E. M.; Tilitsky, J. M.; Meng, W.; Gierasch, L. M. How Hsp70 Molecular Machines Interact with Their Substrates to Mediate Diverse Physiological Functions. J Mol Biol 2015, 427 (7), 1575–1588. https://doi.org/10.1016/j.jmb.2015.02.004.
(53) Brujić, J.; Hermans Z., R. I.; Walther, K. A.; Fernandez, J. M. Single-Molecule Force Spectroscopy Reveals Signatures of Glassy Dynamics in the Energy Landscape of Ubiquitin. Nature Phys 2006, 2 (4), 282–286. https://doi.org/10.1038/nphys269.
(54) Rebane, A. A.; Ma, L.; Zhang, Y. Structure-Based Derivation of Protein Folding Intermediates and Energies from Optical Tweezers. Biophysical Journal 2016, 110 (2), 441–454. https://doi.org/10.1016/j.bpj.2015.12.003.
(55) Yu, H.; Gupta, A. N.; Liu, X.; Neupane, K.; Brigley, A. M.; Sosova, I.; Woodside, M. T. Energy Landscape Analysis of Native Folding of the Prion Protein Yields the Diffusion Constant, Transition Path Time, and Rates. PNAS 2012, 109 (36), 14452–14457. https://doi.org/10.1073/pnas.1206190109.
(56) Jha, S. K.; Udgaonkar, J. B. Free Energy Barriers in Protein Folding and Unfolding Reactions. Current Science 2010, 99 (4), 457–475.
(57) Lagarrigue, F.; Vikas Anekal, P.; Lee, H.-S.; Bachir, A. I.; Ablack, J. N.; Horwitz, A. F.; Ginsberg, M. H. A RIAM/Lamellipodin–Talin–Integrin Complex Forms the Tip of Sticky Fingers That Guide Cell Migration. Nature Communications 2015, 6 (1), 8492. https://doi.org/10.1038/ncomms9492.
(58) Rahikainen, R.; von Essen, M.; Schaefer, M.; Qi, L.; Azizi, L.; Kelly, C.; Ihalainen, T. O.; Wehrle-Haller, B.; Bastmeyer, M.; Huang, C.; Hytönen, V. P. Mechanical Stability of Talin Rod Controls Cell Migration and Substrate Sensing. Scientific Reports 2017, 7 (1), 3571. https://doi.org/10.1038/s41598-017-03335-2.
(59) Kumar, A.; Ouyang, M.; Van den Dries, K.; McGhee, E. J.; Tanaka, K.; Anderson, M. D.; Groisman, A.; Goult, B. T.; Anderson, K. I.; Schwartz, M. A. Talin Tension Sensor Reveals Novel Features of Focal Adhesion Force Transmission and Mechanosensitivity. Journal of Cell Biology 2016, 213 (3), 371–383. https://doi.org/10.1083/jcb.201510012.
(60) Grashoff, C.; Hoffman, B. D.; Brenner, M. D.; Zhou, R.; Parsons, M.; Yang, M. T.; McLean, M. A.; Sligar, S. G.; Chen, C. S.; Ha, T.; Schwartz, M. A. Measuring Mechanical Tension across Vinculin Reveals Regulation of Focal Adhesion Dynamics. Nature 2010, 466 (7303), 263–266. https://doi.org/10.1038/nature09198.
(61) Kenific, C. M.; Wittmann, T.; Debnath, J. Autophagy in Adhesion and Migration. Journal of Cell Science 2016, 129 (20), 3685–3693. https://doi.org/10.1242/jcs.188490.
(62) Ulbricht, A.; Eppler, F. J.; Tapia, V. E.; van der Ven, P. F. M.; Hampe, N.; Hersch, N.; Vakeel, P.; Stadel, D.; Haas, A.; Saftig, P.; Behrends, C.; Fürst, D. O.; Volkmer, R.; Hoffmann, B.; Kolanus, W.; Höhfeld, J. Cellular Mechanotransduction Relies on Tension-Induced and Chaperone-Assisted Autophagy. Curr Biol 2013, 23 (5), 430–435. https://doi.org/10.1016/j.cub.2013.01.064.
(63) Chaudhuri, D.; Banerjee, S.; Chakraborty, S.; Halder, S. The Mechanical Roles of Chaperones. bioRxiv 2020, 2020.10.20.346973. https://doi.org/10.1101/2020.10.20.346973.
(64) Banerjee, R.; Jayaraj, G. G.; Peter, J. J.; Kumar, V.; Mapa, K. Monitoring Conformational Heterogeneity of the Lid of DnaK Substrate-Binding Domain during Its Chaperone Cycle. FEBS J 2016, 283 (15), 2853–2868. https://doi.org/10.1111/febs.13769.
(65) Kahn, T. B.; Fernández, J. M.; Perez-Jimenez, R. Monitoring Oxidative Folding of a Single Protein Catalyzed by the Disulfide Oxidoreductase DsbA*. Journal of Biological Chemistry 2015, 290 (23), 14518–14527. https://doi.org/10.1074/jbc.M115.646000.
(66) Valle-Orero, J.; Tapia-Rojo, R.; Eckels, E. C.; Rivas-Pardo, J. A.; Popa, I.; Fernández, J. M. Proteins Breaking Bad: A Free Energy Perspective. J. Phys. Chem. Lett. 2017, 8 (15), 3642–3647. https://doi.org/10.1021/acs.jpclett.7b01509.
(67) Valle‐Orero, J.; Rivas‐Pardo, J. A.; Tapia‐Rojo, R.; Popa, I.; Echelman, D. J.; Haldar, S.; Fernández, J. M. Mechanical Deformation Accelerates Protein Ageing. Angewandte Chemie International Edition 2017, 56 (33), 9741–9746. https://doi.org/10.1002/anie.201703630.