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Abstract:  In the emerging era of internet of things (IoT), ubiquitous sensors continuously 

collect, consume, store, and communicate an astonishing volume of information, which are 

becoming increasingly vulnerable to theft and misuse. Modern software crypto systems are 

powerful but require extensive computational infrastructure for implementing ciphering 

algorithms making it difficult to be adopted by IoT edge sensors that operate with limited 

hardware resources and at miniscule energy budgets. Here we propose, and experimentally 

demonstrate a low-power, biomimetic, crypto system integrated with IoT edge sensor based 

on an array of atomically thin, multifunctional, and programmable MoS2 field effect 

transistors (FETs). We show that the information received by a MoS2 photodetector and 

encrypted by a population of MoS2 based reconfigurable artificial neural encoders is secure 

from an eavesdropper with finite resources. We also show that our all-in-one IoT platform 

consumes miniscule energy in the range of tens to hundreds of pico Joules, has a small 

hardware footprint, and combines sensing, non-volatile storage, and security, for the first 

time.  
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Introduction 

Information security is key for sustainable growth and development of any modern society that 

thrives on global connectivity in this new era of Internet of Things (IoT). Today, information is 

collected, stored, and communicated continuously by IoT sensors and edge devices that are found 

ubiquitously in our homes, workplaces, industrial manufacturing plants, transportation, health 

sectors, agricultural fields, and so on and so forth. However, there is an escalating threat of 

information loss, misuse, and manipulation owing to the involvement of untrustworthy parities [1]. 

While the state-of-the-art crypto systems offer powerful security solutions based on complex 

ciphering algorithms [2-4] that can be implemented using hardware accelerators [5], IoT edge 

devices have many restrictions in terms of computational capabilities due to limited hardware and 

energy resources. Furthermore, low-cost design needs, large-scale deployments, and 

heterogeneous nature of the IoT sensors limit direct adoption of traditional security solutions, 

including the widely used public key scheme. Due to inadequate security, IoT devices used in 

smart-cars, and smart-homes have shown tremendous vulnerability in the recent times [6]. 

Therefore, wider adoption of IoT technology can be greatly hindered if cryptosystems and security 

protocols which require less computational resources are not developed and integrated with the 

IoT edge sensor in a timely manner.  

 

Here, we exploit a new paradigm, namely, in-memory biomimetic computing to offer an integrated 

sensing, storage, and security solution for IoT edge devices with minimal hardware investments 

and at frugal energy expenditure. Our demonstration is based on atomically thin and 

multifunctional MoS2 field effect transistors (FETs) with a programmable gate stack that can be 

used as sensor, i.e. photodetector (PD), as well as various components of the proposed 

cryptographic engine or artificial neural encoder. The encryption is done by a finite population (𝑃𝑃) 
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of encoders with reconfigurable encoding threshold (𝑉𝑉𝑇𝑇𝑇𝑇) using a zero mean white Gaussian noise 

(WGN) of finite standard deviation (𝜎𝜎). The decryption requires an optimum number of voting 

mandate (𝑉𝑉𝑀𝑀) that is determined by 𝑃𝑃, 𝑉𝑉𝑇𝑇𝑇𝑇, and 𝜎𝜎 without the knowledge of which an eavesdropper 

requires an astronomical number of brute force trials (BFTs) for deciphering the information. In 

fact, the information remains concealed even if the eavesdropper has access to a trained artificial 

neural network (ANN). Note that our inspiration is derived from the organization of peripheral and 

central nervous system which employ similar cell type i.e. neurons with different functionalities 

that transduce external sensory information into electrical impulses and then communicate with 

each other as a group through successive encoding and decoding processes in the presence of a 

wide range of synaptic noise. To the best of our knowledge, this is the first demonstration of an 

all-in-one biomimetic IoT hardware platform based on multifunctional MoS2 FETs that integrates 

sensing, non-volatile storage, and security. See Extended Data 1 for a benchmarking table 

summarizing earlier works based on 2D materials and memristors that combine either sensing and 

storage or security and storage.  

 

Fig. 1a shows the schematic of our proposed all-in-one IoT platform. The IoT sensor collects the 

information, which is encrypted using an array of encoders. Each encoder comprises of a white 

Gaussian noise adder (WGNA) and an artificial neuron (AN). Fig. 1b shows the associated 

hardware based on programmable and multifunctional MoS2 field effect transistor (FET) arrays, 

which are used as photodetectors (PDs) for sensing, and WGNAs and ANs for encryption. Fig. 1c 

shows an example experimental demonstration of sensing and ciphering. Information, for example, 

an 8×8 pixelated image of the letter ‘N’ obtained by illuminating a blue light emitting diode (LED) 

is presented to the IoT sensor, i.e. MoS2 PD. The photocurrent (IPH) in response is superimposed  
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Figure 1. Hardware realization of all-in-one IoT platform based on programmable and multifunctional MoS2 

field effect transistor (FET) arrays. a) Schematic representation of our proposed all-in-one IoT platform that 

involves sensing, storage, and security. The IoT sensor collects the information, which is encrypted using an array 

of encoders. Each encoder comprises of a white Gaussian noise adder (WGNA) and an artificial neuron (AN). b) 

Associated hardware based on programmable and multifunctional MoS2 FET arrays, which are used as 

photodetector (PD) for sensing, and WGNA and AN for encryption. c) An example experimental demonstration of 

sensing and ciphering. Information, for example, an 8×8 pixelated image of the letter ‘N’ obtained by illuminating 

a blue light emitting diode (LED) is presented to the IoT sensor, i.e. MoS2 PD. The photocurrent (𝐼𝐼𝑃𝑃𝑇𝑇) in response 

is superimposed with zero mean white Gaussian noise (WGN) of desirable standard deviation and transduced to 

subthreshold presynaptic voltage (𝐼𝐼𝑃𝑃𝑃𝑃𝑃𝑃) using MoS2 WGNAs and presented to MoS2 ANs with pre-programmed 

threshold voltages. The information is revealed by a decoder through a voting process if the encoding knowledge 

is accessible.  
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with zero mean WGN of desirable standard deviation and transduced to subthreshold presynaptic 

voltage (VPSV) using MoS2 WGNAs and presented to MoS2 ANs with pre-programmed threshold 

voltages. The information is revealed by a decoder through a voting process if the encoding 

knowledge is accessible. see Extended Data 2 for the description of the experimental setup and 

measurement procedures. 

 

The use of MoS2 for our all-in-one IoT platform is motivated by recent studies demonstrating 

various low-power sensors based on MoS2 that can benefit the IoT technology [7-13]. In addition, 

MoS2 offers compatibility with flexible [14] and printable technologies [15] and shows promise 

for neuromorphic and biomimetic applications [16-18]. MoS2 used in this study was grown 

epitaxially on a sapphire substrate using metal organic chemical vapor deposition (MOCVD) 

technique at 1000 0C and subsequently, transferred from the growth substrate to the device 

fabrication substrate using the PMMA-assisted wet transfer process [19]. The large area MOCVD 

growth allows for the fabrication of low-power and programmable monolayer MoS2 FET arrays 

that can be used for sensing, storage, and ciphering information. See Methods section for further 

details on the synthesis, film transfer, and fabrication of MoS2 FETs. Fig. 2a-b show the schematic 

and optical image of arrays of such MoS2 FETs used for our all-in-one IoT platform. Fig. 2c shows 

the transfer characteristics, i.e. source to drain current (𝐼𝐼𝐷𝐷𝑃𝑃) as a function of the back-gate voltage 

(𝑉𝑉𝐵𝐵𝐵𝐵) at different drain biases (𝑉𝑉𝐷𝐷𝑃𝑃) for a representative MoS2 FET with 1 μm channel length, 5 

μm channel width, and a stack of 40 nm Ni/30 nm Au as the source and drain contacts. The back-

gate stack for the FET comprised of atomic layer deposition (ALD) grown 50 nm Al2O3 on 

Pt/TiN/p++-Si. As we will discuss next, this gate stack allows realization of analog, non-volatile, 

and programmable memory states in MoS2 FETs, which is the key towards the realization of crypto 
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engine for IoT security. In addition, the use of thin and high-k gate oxide such as Al2O3 compared 

to conventional 300 nm of SiO2 facilitates better electrostatic control of the MoS2 channel and 

allows operation below 5 V, which is critical for achieving low-power IoT platform. As seen in 

Fig. 2c MoS2 FET is a unipolar, and n-type thresholding device with 𝑉𝑉𝑇𝑇𝑇𝑇 = 0.8 V, extracted for 𝐼𝐼𝐷𝐷𝑃𝑃 = 10 pA/µm, which is 10 times higher than the average noise floor, i.e. 1 pA/µm. In other 

words the device is considered to be ON if 𝐼𝐼𝐷𝐷𝑃𝑃 ≥ 10 pA/µm. The device also exhibits excellent 

ON/OFF current ratio of ~107 and subthreshold slope (SS) of less than 225 mV/decade. The 

electron field effect mobility (𝜇𝜇𝐹𝐹𝐹𝐹) value extracted from the peak transconductance was found to 

be ~10 cm2/V-s. Fig. 2d shows the output characteristics of the MoS2 FET, i.e. 𝐼𝐼𝐷𝐷𝑃𝑃 versus 𝑉𝑉𝐷𝐷𝑃𝑃 for 

different 𝑉𝑉𝐵𝐵𝐵𝐵. Relatively high ON current of ~ 37 μA/μm at 𝑉𝑉𝐷𝐷𝑃𝑃 = 5 V for an inversion charge 

carrier density of ~6.2×1012/cm2 confirms high quality of our MOCVD grown monolayer MoS2. 

Note that while our mobility and ON current values are on par with the state-of-the-art literature 

on large area grown MoS2, these do not play a significant role in our proposed IoT platform as we 

will exploit subthreshold device operation to achieve energy efficiency.   

 

Next, we demonstrate the capability of programming our monolayer MoS2 FETs in any desirable 

conductance state with non-volatile retention characteristics. The results are shown in Fig. 2e-h. 

When “Write” programming pulses of different amplitudes, 𝑉𝑉𝑃𝑃, are applied to the back-gate 

electrode, each for a total duration of 𝑡𝑡𝑃𝑃 = 1 s, the transfer characteristics of the device shifts 

towards the right as illustrated in Fig. 2e. During programming, the source and drain terminals 

were grounded. Fig. 2f shows the extracted iso-current (~ 10 pA) threshold voltages, 𝑉𝑉𝑇𝑇𝑇𝑇, 

corresponding to each state measured multiple times, post-programming, to ensure non-volatile 

retention. Similar observations are made when “Write” programming pulses of same amplitude, 
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𝑉𝑉𝑃𝑃 = 10 V, but different tP, are applied to the back-gate electrode as shown in Fig. 2g. Fig. 2h 

shows the corresponding non-volatile shift in 𝑉𝑉𝑇𝑇𝑇𝑇. The shift in 𝑉𝑉𝑇𝑇𝑇𝑇 can be attributed to our back-

gate stack that closely resembles floating gate (FG) configuration used in non-volatile flash 

memory [20]. See Extended Data 3 explaining the memory operation using energy band diagrams. 

In short, the p++-Si/TiN/Pt interface in the stack is characterized by a Schottky barrier (SB), 

whereas, the gate dielectric, i.e. 50 nm Al2O3, acts as an oxide barrier (OB). The OB is much wider 

and taller compared to the SB. When a large positive back-gate voltage, 𝑉𝑉𝐵𝐵𝐵𝐵 = 𝑉𝑉𝑃𝑃, i.e. “Write” 

pulse is applied to the control gate (CG), i.e. p++-Si, carriers tunnel from the p++-Si into the Pt/TiN 

floating gate (FG) and remains trapped even when the 𝑉𝑉𝑃𝑃 is released. These negative fixed charges 

on the FG screen the electric field from CG and thereby makes the 𝑉𝑉𝑇𝑇𝑇𝑇 more positive. The total 

amount of charge injected into the FG, and hence shift in 𝑉𝑉𝑇𝑇𝑇𝑇 of the MoS2 FET can be controlled 

by the amplitude, and duration, of the “Write” programming pulse as shown in Fig. 2e and 2g, 

respectively. Note that once programmed, the devices continue to remain in the programmed state 

as evident from the retention measurements displayed in Fig. 2f and 2h. This is critical for non-

volatile memory operation. Furthermore, the device can be programmed in any desired state 

indicative of analog memory operation, which we will exploit later for the realization of look-up-

table based Gaussian random number generator for the ciphering operation. It is also possible to 

restore the device from any programmed state to its initial state by applying negative voltage pulses 

of certain magnitude and duration (see Extended Data 4 for preset, set, and reset of a representative 

MoS2 FET). It is also important to mention here that although our back-gate stack is global, 

programming and erase operations can be performed on individual MoS2 FETs without impacting 

the adjacent devices (see Extended Data 5). Finally, the “Write” energy (𝐸𝐸𝑊𝑊) was found to be in 

the range of 500 -1000 fJ calculated based on 𝐸𝐸𝑊𝑊 = 1
2� 𝐶𝐶𝐵𝐵𝑉𝑉𝑃𝑃2. 
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Figure 2. MoS2 FET for compute, storage, and sensing. a) Schematic of MoS2 FET with programable back-gate 

stack comprised of atomic layer deposition (ALD) grown 50 nm Al2O3 on Pt/TiN/p++-Si. b) Optical image of arrays 

of MoS2 FETs used for our all-in-one IoT platform. c) Transfer characteristics, i.e. source to drain current (𝐼𝐼𝐷𝐷𝑃𝑃) 

versus back-gate voltage (𝑉𝑉𝐵𝐵𝐵𝐵) at different drain biases (𝑉𝑉𝐷𝐷𝑃𝑃) for a representative MoS2 FET with 1 μm channel 
length (𝐿𝐿), 5 μm channel width (𝑊𝑊), and a stack of 40 nm Ni/30 nm Au as the source and drain contacts. d) Output 

characteristics of the MoS2 FET, i.e. 𝐼𝐼𝐷𝐷𝑃𝑃 versus 𝑉𝑉𝐷𝐷𝑃𝑃 for different 𝑉𝑉𝐵𝐵𝐵𝐵 . e) Shift in transfer characteristics of MoS2 

FET when “Write” programming pulses of different amplitudes, 𝑉𝑉𝑃𝑃, are applied to the back-gate electrode, each 

for a total duration of 𝑡𝑡𝑃𝑃 = 1 s, f) Extracted iso-current (~ 10 pA) threshold voltages, 𝑉𝑉𝑇𝑇𝑇𝑇, corresponding to each 

state in (e) measured multiple times, post-programming to demonstrate non-volatile retention. e) Shift in transfer 

characteristics of MoS2 FET when “Write” programming pulses of same amplitude, 𝑉𝑉𝑃𝑃 = 10 V, but different 𝑡𝑡𝑃𝑃, 

are applied to the back-gate electrode. g) Corresponding non-volatile shift in 𝑉𝑉𝑇𝑇𝑇𝑇. The device can be programmed 

to any desired conductance state indicative of analog memory operation. i) Transfer characteristics of MoS2 FET 

in dark and under the illumination of a blue LED, placed at ~ 1 cm distance. The device shows reasonable 

photoresponse and hence can be used as a photodetector (PD). j) Photoresponse (𝐼𝐼𝑃𝑃𝑇𝑇) of the device, measured at 𝑉𝑉𝐵𝐵𝐵𝐵  = 1.5 V to different input stimulus, i.e. 8×8 pixelated images of the letters, ‘L’, ‘M’, ‘N’, and ‘P’, obtained 

through the LED illumination. Each pixel corresponds to 1 ms LED illumination. k) Corresponding photocurrent 

maps demonstrate that the MoS2 PD can accurately translate optical information into electrical response. Note 

that the MoS2 PD was biased in the subthreshold regime to enable exponential reduction in the dark current (~ 1 

pA) and thereby making 𝐼𝐼𝑃𝑃𝑇𝑇  = 𝐼𝐼𝐷𝐷𝑃𝑃 under illumination. This also allows ultra-low-power photodetection with 

energy expenditure in the range 𝐸𝐸𝑃𝑃𝐷𝐷~25-30 pJ/pixel, averaged over all pixels.  
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Next, we demonstrate the photosensing capability of monolayer MoS2 FET. Fig. 2i shows the 

transfer characteristics of a representative MoS2 FET in dark and under the illumination of a blue 

LED, which is placed at ~ 1 cm distance operating at its maximum rated brightness (5 V). Clearly, 

the device shows reasonable photoresponse and hence can be used as a photodetector (PD). Note 

that unlike most studies that use LASER excitation to evaluate the photoresponse of MoS2 FETs, 

we have used LED as the optical source to resemble more realistic lighting ambience where most 

IoT sensors will be deployed. The phototransduction mechanism in MoS2 PD is extensively 

studied in the literature including our previous reports and can be ascribed to a combination of 

photocarrier generation in the MoS2 channel as well as photogating effect arising due to charge 

trapping/detrapping at the MoS2/gate-dielectric interface [21]. Fig. 2j shows the photoresponse 

(𝐼𝐼𝑃𝑃𝑇𝑇) of the device, measured at VBG = 1.5 V to different input stimulus, i.e. 8×8 pixelated images 

of the letters, ‘L’, ‘M’, ‘N’, and ‘P’, obtained through the LED illumination. Each pixel 

corresponds to 𝑡𝑡𝐿𝐿 = 1 ms LED illumination. The corresponding photocurrent maps in Fig. 2k 

demonstrate that the MoS2 PD is able to accurately transcribe the optical information into electrical 

response. Note that the MoS2 PD was biased in the subthreshold regime to enable exponential 

reduction in the dark current (~ 1 pA) and thereby making 𝐼𝐼𝑃𝑃𝑇𝑇 = 𝐼𝐼𝐷𝐷𝑃𝑃 under illumination. This also 

allows ultra-low-power photodetection with energy expenditure in the range 𝐸𝐸𝑃𝑃𝐷𝐷~25-30 fJ/pixel, 

averaged over all pixels.  

 

Fig. 3 shows the implementation of the biomimetic crypto engine or artificial neural encoder based 

on programmable MoS2 FETs. Fig. 3a show the circuit diagram for the MoS2 WGNA, which 

comprises of a current adder (CA) and a look-up-table based white Gaussian Noise (WGN) 

generator. The CA adds white Gaussian noise (𝐼𝐼𝑁𝑁𝑁𝑁𝑁𝑁𝑃𝑃𝐹𝐹) obtained from the WGN generator to the 
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photocurrent (𝐼𝐼𝑃𝑃𝑇𝑇) obtained from the MoS2 PD using a simple resistor network and convert it to 

presynaptic voltage (𝑉𝑉𝑃𝑃𝑃𝑃𝑃𝑃) to be applied to the MoS2 AN. The WGN generator is an array of 𝑀𝑀 = 

64 MoS2 FETs with preprogrammed threshold voltages such that their conductance values (𝐺𝐺𝑀𝑀) 

follow random Gaussian distribution. Fig. 3b shows the transfer characteristics of MoS2 FETs 

corresponding to a representative WGN generator. Fig. 3c shows the histogram of output current 

values (𝐼𝐼𝑀𝑀 = 𝐺𝐺𝑀𝑀𝑉𝑉𝐷𝐷𝑃𝑃) read at 𝑉𝑉𝐵𝐵𝐵𝐵 = 0 V with 𝑉𝑉𝐷𝐷𝑃𝑃 = ±1 V that constitute the 𝐼𝐼𝑁𝑁𝑁𝑁𝑁𝑁𝑃𝑃𝐹𝐹 =

[𝐼𝐼1 𝐼𝐼2 𝐼𝐼3 … . 𝐼𝐼𝑀𝑀]. Clearly, 𝐼𝐼𝑁𝑁𝑁𝑁𝑁𝑁𝑃𝑃𝐹𝐹 follow a zero mean Gaussian distribution with a standard deviation 

of 𝜎𝜎𝑁𝑁 = 50 pA/µm. Note that different arrays can be preprogrammed to obtain 𝐼𝐼𝑁𝑁𝑁𝑁𝑁𝑁𝑃𝑃𝐹𝐹 with different 𝜎𝜎𝑁𝑁. While it can be argued that on-chip WGN generators are more desirable solutions, these are 

often power hungry, pose integration challenges, and mostly lack reconfiguration capabilities 

based on application needs. Instead, our in-memory look-up-table based WGN is reconfigurable 

and inherently energy efficient since during the field operation the noise current is simply read 

from the memory. Although our approach adds area overhead and utilizes storage resources, it 

integrates well with our all-in-one IoT platform. Fig. 3d shows the transduction of the photocurrent 

map for the letter ‘N’ to 𝑉𝑉𝑃𝑃𝑃𝑃𝑃𝑃 for different noise standard deviation (𝜎𝜎𝑃𝑃). Note that the resistive 

network used by the CA allows linear transformation of the noise current into noise voltage with 𝜎𝜎𝑃𝑃 = 𝑅𝑅𝐿𝐿𝜎𝜎𝑁𝑁. Fig. 3e shows the corresponding 𝑉𝑉𝑃𝑃𝑃𝑃𝑃𝑃 maps. The average energy expenditure for the 

transduction of 𝐼𝐼𝑃𝑃𝑇𝑇 to 𝑉𝑉𝑃𝑃𝑃𝑃𝑃𝑃 was found to be in the range of 𝐸𝐸𝑇𝑇 = 160 fJ/pixel, which includes the 

read energy consumed by the in-memory WGN generator, calculated using Eq. 1. 

𝐸𝐸𝑇𝑇 = �[(𝐼𝐼𝑃𝑃𝑇𝑇 + 𝐼𝐼𝑁𝑁𝑁𝑁𝑁𝑁𝑃𝑃𝐹𝐹)𝑉𝑉𝑃𝑃𝑃𝑃𝑃𝑃 + 𝐼𝐼𝑁𝑁𝑁𝑁𝑁𝑁𝑃𝑃𝐹𝐹𝑉𝑉𝐷𝐷𝑃𝑃]𝑡𝑡𝐿𝐿𝑀𝑀
1                                                                                        [1] 

Extended Data 6 shows the schematic and transfer characteristics of the MoS2 FET used as AN 

mimicking biological neurons with pre-synaptic voltage (𝑉𝑉𝑃𝑃𝑃𝑃𝑃𝑃) applied to the back-gate terminal  
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Figure 3. Programmable MoS2 FET based biomimetic cryptography engine for IoT security. a) Circuit diagram 

for the MoS2 FET based white Gaussian noise adder (WGNA) comprising of a current adder (CA) and a look-up-

table based white Gaussian Noise (WGN) generator. The WGN generator is an array of 𝑀𝑀 = 64 MoS2 FETs with 

preprogrammed threshold voltages such that their conductance values (𝐺𝐺𝑁𝑁) follow random Gaussian distribution. 

b) Transfer characteristics of array elements of a representative WGN generator and c) corresponding histogram 

of output current values (𝐼𝐼𝑀𝑀 = 𝐺𝐺𝑀𝑀𝑉𝑉𝐷𝐷𝑃𝑃) read at 𝑉𝑉𝐵𝐵𝐵𝐵  = 0 V with 𝑉𝑉𝐷𝐷𝑃𝑃 = ±1 V constituting the 𝐼𝐼𝑁𝑁𝑁𝑁𝑁𝑁𝑃𝑃𝐹𝐹 = [𝐼𝐼1 𝐼𝐼2 𝐼𝐼3 … . 𝐼𝐼𝑀𝑀]. 𝐼𝐼𝑁𝑁𝑁𝑁𝑁𝑁𝑃𝑃𝐹𝐹  follows a zero mean Gaussian distribution with standard deviation of 𝜎𝜎𝑁𝑁 = 50 pA/µm. Note that different 

arrays can be preprogrammed to obtain 𝐼𝐼𝑁𝑁𝑁𝑁𝑁𝑁𝑃𝑃𝐹𝐹  with different 𝜎𝜎𝑁𝑁. The CA adds WGN to the photocurrent and 

converts it into presynaptic voltage (𝑉𝑉𝑃𝑃𝑃𝑃𝑃𝑃) to be applied to the MoS2 based artificial neuron (AN). Since we use 

resistive network, the noise current transforms into noise voltage with standard deviation, 𝜎𝜎𝑃𝑃 = 𝑅𝑅𝐿𝐿𝜎𝜎𝑁𝑁. d) 𝑉𝑉𝑃𝑃𝑃𝑃𝑃𝑃  and 

e) corresponding color map for the letter ‘N’ after the transduction process using MoS2 WGNA for different 𝜎𝜎𝑃𝑃. 

f) Corresponding post-synaptic current (𝐼𝐼𝑃𝑃𝑃𝑃𝑃𝑃) and g) 𝐼𝐼𝑃𝑃𝑃𝑃𝑃𝑃  map obtained from MoS2 AN with a preprogrammed 

threshold voltage of 𝑉𝑉𝑇𝑇𝑇𝑇 = 1.5 V. Note that, for 𝑉𝑉𝑃𝑃𝑃𝑃𝑃𝑃 < 𝑉𝑉𝑇𝑇𝑇𝑇 the MoS2 AN does not invoke any observable current 

response as in the case of low 𝜎𝜎𝑃𝑃. For higher 𝜎𝜎𝑃𝑃, there are more threshold crossing events resulting in more 

brighter pixels in the 8×8 encrypted image of the letter ‘N’. 
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and post-synaptic current (𝐼𝐼𝑃𝑃𝑃𝑃𝑃𝑃) measured at the drain terminal with a drain bias, 𝑉𝑉𝐷𝐷𝑃𝑃 = 1 V. The 

encoding threshold was programmed to be 𝑉𝑉𝑇𝑇𝑇𝑇 = 1.5 V, such that the presynaptic voltage pulses 

(𝑉𝑉𝑃𝑃𝑃𝑃𝑃𝑃) obtained from the MoS2 WGNA (Fig. 3d) are primarily subthreshold with occasional 

threshold crossing events due to the addition of the WGN. Note that, for 𝑉𝑉𝑃𝑃𝑃𝑃𝑃𝑃 < 𝑉𝑉𝑇𝑇𝑇𝑇 the MoS2 AN 

does not invoke any observable current response greater than the noise floor of the measurement 

(~ 1 pA/µm). Fig. 3f and Fig. 3g, respectively, show the 𝐼𝐼𝑃𝑃𝑃𝑃𝑃𝑃 and the corresponding map for 

different 𝜎𝜎𝑃𝑃 for the letter ‘N’.  As evident, for lower 𝜎𝜎𝑃𝑃, there are none to limited threshold crossing 

events resulting in sporadic bright pixels in the 8×8 encrypted image of the letter ‘N’, whereas, for 

higher σ values, there are more frequent threshold crossing events resulting in greater number of 

bright pixels in the 8×8 encrypted image of the letter ‘N’. Nevertheless, the 𝐼𝐼𝑃𝑃𝑃𝑃𝑃𝑃 map constitute 

the encoded information for the letter ‘N’. 

  

Next, to analyze the strength of the encryption process, we define true positive (TP) as an event 

when a bright pixel in the encoded image corresponds to a bright pixel in the original image, and 

false positive (FP) as an event when a bright pixel in the encoded image corresponds to a dark 

pixel in the original image. The likelihood of identifying the letter ‘N’ by an eavesdropper from 

the encrypted image will, therefore, be determined by the detectivity (D), which is defined as 𝐷𝐷 =𝑝𝑝𝑇𝑇𝑃𝑃 − 𝑝𝑝𝐹𝐹𝑃𝑃, where, 𝑝𝑝𝑇𝑇𝑃𝑃 is the probability of TP, and 𝑝𝑝𝐹𝐹𝑃𝑃 is the probability of FP. Colormaps in Fig. 

4a-c, respectively, show 𝑝𝑝𝑇𝑇𝑃𝑃, 𝑝𝑝𝐹𝐹𝑃𝑃, and 𝐷𝐷 as a function of 𝜎𝜎𝑃𝑃 obtained by repeating the experiments 

with a population of P = 50 encoders and Fig. 4d shows the corresponding population means. Note 

that the population mean for 𝐷𝐷 exhibits a non-monotonic behavior. At low noise level, there is 

hardly any FP, i.e. low 𝑝𝑝𝐹𝐹𝑃𝑃, but the likelihood of detecting the letter ‘N’ remains low due to limited 

threshold crossing events for the original bright pixels, i.e. low 𝑝𝑝𝑇𝑇𝑃𝑃. At high noise level, both bright 
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and dark pixels corresponding to the original image cross the spiking threshold resulting in high 𝑝𝑝𝑇𝑇𝑃𝑃, and 𝑝𝑝𝐹𝐹𝑃𝑃, and, therefore, low 𝐷𝐷. However, at an intermediate noise, the detectivity reaches its 

maximum value. Fig. 4e shows the number of brute force trials (BFTs) by the eavesdropper, 

necessary to identify the letter ‘N’ as a function of 𝜎𝜎𝑃𝑃. Note that we computed BFT = 1 𝐷𝐷𝑃𝑃�  , where 𝑆𝑆 = 8×8 = 64 is the size of the image. The number of BFTs are found to be astronomical irrespective 

of 𝜎𝜎𝑃𝑃. Furthermore, the number of BFTs increases exponentially with 𝑆𝑆 (see Extended Data 7). 

Therefore, the encryption can be considered to be secure from an eavesdropper with finite 

resources. Fig. 4f shows the average energy expenditure by a MoS2 AN for the encryption of the 

letter ‘N” as a function of 𝜎𝜎𝑃𝑃. Note that the energy expenditure is less than 10 pJ/pixel even for the 

highest 𝜎𝜎𝑃𝑃.  

 

The encryption strength is also tested assuming that the eavesdropper has access to a trained 

artificial neural network (ANN) and the information being communicated are encrypted MNIST 

data set for digit classification. Fig. 4g shows a fully connected two-layered ANN with 100 neurons 

in the hidden layer and 10 neurons in the output layer. The 10 output neurons correspond to digits 

from 0 to 9. MNIST images (28×28 pixels) are flattened to obtain corresponding 784×1 vectors, 

which are fed to the input layer. Gradient decent algorithm is used to train the ANN using 60,000 

images with a learning rate of 0.001 and rectified linear unit (ReLU) as the activation function to 

ensure high convergence accuracy of 90.6% beyond 300 epochs. Following this, a testing accuracy 

of 92.2% was achieved using the remaining 10,000 images. Note that higher training and testing 

accuracies can be achieved by optimizing the network, which is not the primary focus of this work. 

Next, we added white Gaussian noise to 10,000 MNIST images and binarized them at a threshold 

of 1.5 mimicking our MoS2 based artificial neural encoder. Fig. 4h shows some example of  
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Figure 4. Strength of biomimetic encryption.  Colormaps of likelihood or probability of (a) true positive (𝑝𝑝𝑇𝑇𝑃𝑃), 

(b) false positive (𝑝𝑝𝐹𝐹𝑃𝑃), and (c) detectivity (𝐷𝐷 =  𝑝𝑝𝑇𝑇𝑃𝑃 − 𝑝𝑝𝐹𝐹𝑃𝑃) as a function of 𝜎𝜎𝑃𝑃 for 𝑃𝑃 = 50 encoders. (d) 

Corresponding population means. True positive (TP) is an event when a bright pixel in the encoded image 

corresponds to a bright pixel in the original image, and false positive (FP) is an event when a bright pixel in the 

encoded image corresponds to a dark pixel in the original image. At low noise level, there is hardly any FP, i.e. 

low 𝑝𝑝𝐹𝐹𝑃𝑃, but the likelihood of detecting the letter ‘N’ remains low due to limited threshold crossing events for the 

original bright pixels, i.e. low 𝑝𝑝𝑇𝑇𝑃𝑃. At high noise level, both bright and dark pixels corresponding to the original 

image cross the encoder threshold resulting in high 𝑝𝑝𝑇𝑇𝑃𝑃, and 𝑝𝑝𝐹𝐹𝑃𝑃 , and, therefore, low 𝐷𝐷. However, at an 

intermediate noise, the detectivity reaches its maximum value. Note that the population mean for 𝐷𝐷 exhibits a non-

monotonic trend. e) The number of brute force trials (BFTs) by the eavesdropper, necessary to identify the letter 

‘N’ as a function of 𝜎𝜎𝑃𝑃. Note that BFT = 1/𝐷𝐷𝑃𝑃, where, 𝑆𝑆 = 8×8 = 64, is the size of the image. The number of BFTs 

are found to be astronomical irrespective of the amount of noise. f) The average energy expenditure for the 

encryption process as a function of 𝜎𝜎𝑃𝑃. g) A fully connected artificial neural network (ANN) with 100 neurons in 

the hidden layer and 10 neurons in the output layer, trained using gradient decent algorithm with learning rate of 

0.001 to recognize MNIST data set for digit classification. Rectified linear unit is used as the activation function. 

The training and testing sets consisted of 60,000 and10,000 images, respectively. High convergence accuracy of 

90.6% and inference accuracy of 92.2% is achieved. h) Representative MNIST images with white Gaussian noise 

(WGN) of different standard deviation (𝜎𝜎) binarized at a threshold of 1.5 mimicking our MoS2 based artificial 

neural encoder. i) Average inference accuracy for 10,000 encrypted images as a function of 𝜎𝜎. A non-monotonic 

trend is seen. However, irrespective of 𝜎𝜎, the inference accuracy remains low indicating the robustness of our 

biomimetic encryption to trained ANNs.   
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encoded MNIST images for different standard deviation (𝜎𝜎) of the WGN. Fig.4i shows the 

inference accuracy for the encrypted images as a function of 𝜎𝜎, which follows a non-monotonic 

behavior. Interestingly, the accuracy values are found to be significantly low irrespective of 𝜎𝜎, 

indicating the robustness of our proposed encryption scheme to trained ANNs.   

 

In order to retrieve the information, we adopt population voting-based algorithm. We assume that 

the encoded images of the letter ‘N’ are transmitted over different communication channels by 𝑃𝑃 

encoders. The receiver at the other end receives 𝑃𝑃 encoded images and counts the number votes 

corresponding to each pixel. Fig. 5a shows the vote counts for each pixel when 𝑃𝑃 = 50 for different 𝜎𝜎𝑃𝑃. A vote is registered when the encoded pixel is bright, i.e. 𝐼𝐼𝑃𝑃𝑃𝑃𝑃𝑃 > 10 pA. The vote is considered 

to be a true positive vote (TPV) if the corresponding pixel in the original image is also bright, 

whereas the vote is considered to be a false positive vote (FPV) if the corresponding pixel in the 

original image is dark. Fig. 5b and 5c, respectively, show the probability distribution for TPVs  

(𝑝𝑝𝑇𝑇𝑃𝑃𝑃𝑃) and FPVs (𝑝𝑝𝐹𝐹𝑃𝑃𝑃𝑃) for 𝑃𝑃 = 50 for different 𝜎𝜎𝑃𝑃. At low noise levels, the probability of crossing 

the encoding threshold (𝑉𝑉𝑇𝑇𝑇𝑇) is low and hence only a few encoders fire simultaneously resulting 

in lower expected number of encoders for TPV, i.e. 〈𝑁𝑁𝑇𝑇𝑃𝑃𝑃𝑃〉 = ∑ 𝑛𝑛𝑝𝑝𝑇𝑇𝑃𝑃𝑃𝑃(𝑛𝑛)𝑃𝑃𝑛𝑛=1 . The expected 

number of encoders for FPV, i.e. , 〈𝑁𝑁𝐹𝐹𝑃𝑃𝑃𝑃〉 = ∑ 𝑛𝑛𝑝𝑝𝐹𝐹𝑃𝑃𝑃𝑃(𝑛𝑛)𝑃𝑃𝑛𝑛=1 ,  is even lower. Similarly, at high 

noise level, the probability of crossing the threshold of the encoder is high and hence more 

encoders fire synchronously resulting in larger 〈𝑁𝑁𝑇𝑇𝑃𝑃𝑃𝑃〉 and 〈𝑁𝑁𝐹𝐹𝑃𝑃𝑃𝑃〉. However, as seen in Fig. 5b-c 

for any 𝜎𝜎𝑃𝑃, 〈𝑁𝑁𝑇𝑇𝑃𝑃𝑃𝑃〉 is higher than 〈𝑁𝑁𝐹𝐹𝑃𝑃𝑃𝑃〉. Extended Data 8 shows the decoding of the images of 

the letter ‘N’ for different 𝜎𝜎𝑃𝑃 for different number of mandated votes (𝑀𝑀𝑃𝑃) to mark a pixel as bright 

for 𝑃𝑃 = 50. Fig. 5d shows the corresponding colormap of correlation coefficient (CC) between the 

original and the decrypted image as a function of 𝜎𝜎𝑃𝑃 and 𝑀𝑀𝑃𝑃. Note that for a given 𝜎𝜎𝑃𝑃, there is an  
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Figure 5. Voting-based decryption of encrypted information. a) Number of votes corresponding to each pixel of 

the encoded images of the letter ‘N’ received from 𝑃𝑃 = 50 encoders for different 𝜎𝜎𝑃𝑃. A vote is registered when the 

encoded pixel is bright, i.e. 𝐼𝐼𝑃𝑃𝑃𝑃𝑃𝑃  > 10 pA. The vote is a true positive vote (TPV) if the corresponding pixel in the 

original image is also bright, whereas the vote is a false positive vote (FPV) if the corresponding pixel in the 

original image is dark. Probability distribution for b) TPVs  (𝑝𝑝𝑇𝑇𝑃𝑃𝑃𝑃) and c) FPVs (𝑝𝑝𝐹𝐹𝑃𝑃𝑃𝑃) corresponding to (a). 

Insets show the expected number of TPV, i.e. 〈𝑁𝑁𝑇𝑇𝑃𝑃𝑃𝑃〉 = ∑ 𝑛𝑛𝑝𝑝𝑇𝑇𝑃𝑃𝑃𝑃(𝑛𝑛)𝑃𝑃𝑛𝑛=1 , and FPV, i.e., 〈𝑁𝑁𝐹𝐹𝑃𝑃𝑃𝑃〉 = ∑ 𝑛𝑛𝑝𝑝𝐹𝐹𝑃𝑃𝑃𝑃(𝑛𝑛)𝑃𝑃𝑛𝑛=1 . 

d) The colormap of correlation coefficient (CC) between the original and the decrypted images of the letter ‘N’ as 

a function of 𝜎𝜎𝑃𝑃 and 𝑀𝑀𝑃𝑃, when encryption is done by 𝑃𝑃 = 50 encoder with encoding threshold of 𝑉𝑉𝑇𝑇𝑇𝑇 = 1.5 V. 

Here, 𝑀𝑀𝑃𝑃 is the minimum number of votes required to mark a pixel as bright. Note that for a given 𝜎𝜎𝑃𝑃, there is an 

optimum 𝑀𝑀𝑃𝑃, that allows accurate decryption of the encoded image, i.e. CC = 1. e) The colormap of CC between 

the original and the decrypted image of the letter ‘N’ as a function of 𝑉𝑉𝑇𝑇𝑇𝑇 and 𝑀𝑀𝑃𝑃 for 𝜎𝜎𝑃𝑃 = 0.8 V and 𝑃𝑃 = 50. 

Note that without prior knowledge of 𝜎𝜎𝑃𝑃, 𝑃𝑃, and 𝑉𝑉𝑇𝑇𝑇𝑇 it is difficult to determine 𝑀𝑀𝑃𝑃 and hence decode the 

information.  
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optimum 𝑀𝑀𝑃𝑃, that allows accurate decryption of the encoded image, i.e. CC = 1. Extended Data 9 

shows similar results for CC when different encoding population sizes (𝑃𝑃) are used. As expected, 

the optimum number of 𝑀𝑀𝑃𝑃 for accurate decryption is found to be different for similar 𝜎𝜎𝑃𝑃. 

Therefore, without the prior knowledge of the 𝜎𝜎𝑃𝑃 and 𝑃𝑃, used by the biomimetic encoder it is 

difficult to decode the information.  The strength of encoding can be further enhanced by exploiting 

the programming capability of our MoS2 based ANs. Here we reconfigure the encoding threshold 

(𝑉𝑉𝑇𝑇𝑇𝑇) similar to neuroplasticity in biological neurons allowing adaptation to changing environment 

and stimuli. Extended Data 10 shows the encryption of the letter ‘N’, by encoders with different 𝑉𝑉𝑇𝑇𝑇𝑇, for different 𝜎𝜎𝑃𝑃. As obvious if 𝑉𝑉𝑃𝑃𝑃𝑃𝑃𝑃 >  𝑉𝑉𝑇𝑇𝑇𝑇, the encryption process is pointless or in other 

word the communication is insecure. For 𝑉𝑉𝑇𝑇𝑇𝑇 values slightly greater than 𝑉𝑉𝑃𝑃𝑃𝑃𝑃𝑃, there are more 

threshold crossing events even for low 𝜎𝜎𝑃𝑃, whereas, for 𝑉𝑉𝑇𝑇𝑇𝑇 values further from 𝑉𝑉𝑃𝑃𝑃𝑃𝑃𝑃, there are 

limited threshold crossing events even for high 𝜎𝜎𝑃𝑃. Fig. 5e shows the colormap of CC between the 

original and the decrypted image of the letter ‘N’ as a function of 𝑉𝑉𝑇𝑇𝑇𝑇 and 𝑀𝑀𝑃𝑃 for 𝜎𝜎𝑃𝑃 = 0.8 V and 𝑃𝑃 =50 (see Extended Data 11 for similar results with different 𝜎𝜎𝑃𝑃). Clearly, the optimum 𝑀𝑀𝑃𝑃 for 

accurate decryption is found to be different for different 𝑉𝑉𝑇𝑇𝑇𝑇. Therefore, not only 𝜎𝜎𝑃𝑃 and 𝑃𝑃, but 

also prior knowledge of 𝑉𝑉𝑇𝑇𝑇𝑇 is required for decoding the information, which makes the system 

more robust from the eavesdropper.  

 

Conclusion 

In conclusion, we have experimentally demonstrated an all-in-one hardware IoT platform based 

on programmable and multifunctional MoS2 FETs, which is capable of sensing, storing, and 

securing information. Since a single material and similar device structures are used the hardware 

footprint is minimal, ~5 µm X 2 µm for each photodetector, ~5 µm X 3 µm for each CA, 5 µm X 
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64 µm for each WGN generator, and ~5 µm X 2 µm for each AN. The energy expenditure is also 

miniscule, in the range of few tens to hundreds of pico Joules, as we have primarily exploited 

subthreshold FET operation. Furthermore, analog, and non-volatile memory capability allows 

reconfiguration of the IoT platform based on application needs. Finally, the biomimetic IoT 

platform is shown to be secure.  
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Methods 

Film Growth: Monolayer MoS2 was deposited on epi-ready 2” c-sapphire substrate by 

metalorganic chemical vapor deposition (MOCVD). An inductively heated graphite susceptor 

equipped with wafer rotation in a cold-wall horizontal reactor was used to achieve uniform 

monolayer deposition as previously described [22]. Molybdenum hexacarbonyl (Mo(CO)6) and 

hydrogen sulfide (H2S) were used as precursors. Mo(CO)6 maintained at 10°C and 950 Torr in a 

stainless-steel bubbler was used to deliver  0.036 sccm of the metal precursor for the growth, while 

400 sccm of H2S was used for the process. MoS2 deposition was carried out at 1000°C and 50 Torr 

in H2 ambient, where monolayer growth was achieved in 18 min.  The substrate was first heated 

to 1000°C in H2 and maintained for 10 min before the growth was initiated. After growth, the 

substrate was cooled in H2S to 300°C to inhibit decomposition of the MoS2 films.  

 

Film Transfer: After the growth of monolayer MoS2 on sapphire substrate, the film is then 

transferred onto the FET gate dielectric substrate by wet transfer technique. Polymethyl-

methacrylate (A3 PMMA) resist is spin coated onto the growth substrates encapsulating the MoS2 

and then immersed into the 1M NaOH solution kept at 90°C. Capillary action draws the NaOH 

solution to the PMMA/substrate interface, separating the hydrophobic PMMA/MoS2 from the 

sapphire substrate. The detached film floats on the surface, which is then rinsed for multiple times 

in deionized water and is finally transferred on to the Alumina/ Pt/TiN/p++ Si  gate dielectric 

stack[23]. 

 

Fabrication of monolayer MoS2 FET: We have fabricated the back-gated field effect transistors 

on a 50nm alumina (Al2O3) acting as a gate oxide and a stack of Pt/TiN/p++
 Si as a back-gate 
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electrode. First, MOCVD grown MoS2 are transferred onto the alumina sample, then the sample is 

spin coated with A6 PMMA and followed by electron-beam (e-beam)  lithography to specify the 

channels and then separating them out by sulfur hexafluoride (SF6) etch under 5 degree centigrade 

for 30s. After etch step, sample is rinsed in Acetone for 30 min followed by 2-propanol (IPA). To 

define the source and drain contacts, sample is then spin coated with methyl methacrylate (MMA) 

followed by A3 PMMA. Then using electron-beam lithography source and drain contacts are 

patterned and further developed by using 1:1 mixture of 4-methyl -2-pentanone (MIBK) and 2 

propanol for 60s. 40nm of Nickel (Ni) and 30 nm of Gold (Au) are deposited/ evaporated on to the 

patterns using E-beam evaporation. Lift- off the evaporated materials is done by immersing the 

sample in Acetone for 30 min followed by 2-propanol (IPA). 

 

Electrical Characterization: Electrical characterization of the fabricated devices are performed 

using Lake Shore CRX-VF probe station under atmospheric condition using a Keysight B1500A 

parameter analyzer. 

 

Data Availability: The datasets generated during and/or analyzed during the current study are 

available from the corresponding author on reasonable request. 

 

Code Availability: The codes used for plotting the data are available from the corresponding 

authors on reasonable request. 
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Figure Captions 

Figure 1. Hardware realization of all-in-one IoT platform based on programmable and 

multifunctional MoS2 field effect transistor (FET) arrays. a) Schematic representation of our 

proposed all-in-one IoT platform that involves sensing, storage, and security. The IoT sensor 

collects the information, which is encrypted using an array of encoders. Each encoder comprises 

of a white Gaussian noise adder (WGNA) and an artificial neuron (AN). b) Associated hardware 

based on programmable and multifunctional MoS2 FET arrays, which are used as photodetector 

(PD) for sensing, and WGNA and AN for encryption. c) An example experimental demonstration 

of sensing and ciphering. Information, for example, an 8×8 pixelated image of the letter ‘N’ 

obtained by illuminating a blue light emitting diode (LED) is presented to the IoT sensor, i.e. MoS2 

PD. The photocurrent (𝐼𝐼𝑃𝑃𝑇𝑇) in response is superimposed with zero mean white Gaussian noise 

(WGN) of desirable standard deviation and transduced to subthreshold presynaptic voltage (𝐼𝐼𝑃𝑃𝑃𝑃𝑃𝑃) 

using MoS2 WGNAs and presented to MoS2 ANs with pre-programmed threshold voltages. The 

information is revealed by a decoder through a voting process if the encoding knowledge is 

accessible.  

 

Figure 2. MoS2 FET for compute, storage, and sensing. a) Schematic of MoS2 FET with 

programable back-gate stack comprised of atomic layer deposition (ALD) grown 50 nm Al2O3 on 

Pt/TiN/p++-Si. b) Optical image of arrays of MoS2 FETs used for our all-in-one IoT platform. c) 

Transfer characteristics, i.e. source to drain current (𝐼𝐼𝐷𝐷𝑃𝑃) versus back-gate voltage (𝑉𝑉𝐵𝐵𝐵𝐵) at different 

drain biases (𝑉𝑉𝐷𝐷𝑃𝑃) for a representative MoS2 FET with 1 μm channel length (𝐿𝐿), 5 μm channel 

width (𝑊𝑊), and a stack of 40 nm Ni/30 nm Au as the source and drain contacts. d) Output 

characteristics of the MoS2 FET, i.e. 𝐼𝐼𝐷𝐷𝑃𝑃 versus 𝑉𝑉𝐷𝐷𝑃𝑃 for different 𝑉𝑉𝐵𝐵𝐵𝐵. e) Shift in transfer 
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characteristics of MoS2 FET when “Write” programming pulses of different amplitudes, 𝑉𝑉𝑃𝑃, are 

applied to the back-gate electrode, each for a total duration of 𝑡𝑡𝑃𝑃 = 1 s, f) Extracted iso-current (~ 

10 pA) threshold voltages, 𝑉𝑉𝑇𝑇𝑇𝑇, corresponding to each state in (e) measured multiple times, post-

programming to demonstrate non-volatile retention. e) Shift in transfer characteristics of MoS2 

FET when “Write” programming pulses of same amplitude, 𝑉𝑉𝑃𝑃 = 10 V, but different 𝑡𝑡𝑃𝑃, are applied 

to the back-gate electrode. g) Corresponding non-volatile shift in 𝑉𝑉𝑇𝑇𝑇𝑇. The device can be 

programmed to any desired conductance state indicative of analog memory operation. i) Transfer 

characteristics of MoS2 FET in dark and under the illumination of a blue LED, placed at ~ 1 cm 

distance. The device shows reasonable photoresponse and hence can be used as a photodetector 

(PD). j) Photoresponse (𝐼𝐼𝑃𝑃𝑇𝑇) of the device, measured at 𝑉𝑉𝐵𝐵𝐵𝐵 = 1.5 V to different input stimulus, 

i.e. 8×8 pixelated images of the letters, ‘L’, ‘M’, ‘N’, and ‘P’, obtained through the LED 

illumination. Each pixel corresponds to 1 ms LED illumination. k) Corresponding photocurrent 

maps demonstrate that the MoS2 PD can accurately translate optical information into electrical 

response. Note that the MoS2 PD was biased in the subthreshold regime to enable exponential 

reduction in the dark current (~ 1 pA) and thereby making 𝐼𝐼𝑃𝑃𝑇𝑇 = 𝐼𝐼𝐷𝐷𝑃𝑃 under illumination. This also 

allows ultra-low-power photodetection with energy expenditure in the range 𝐸𝐸𝑃𝑃𝐷𝐷~25-30 pJ/pixel, 

averaged over all pixels.  

 

Figure 3. Programmable MoS2 FET based biomimetic cryptography engine for IoT security. 

a) Circuit diagram for the MoS2 FET based white Gaussian noise adder (WGNA) comprising of a 

current adder (CA) and a look-up-table based white Gaussian Noise (WGN) generator. The WGN 

generator is an array of 𝑀𝑀 = 64 MoS2 FETs with preprogrammed threshold voltages such that their 

conductance values (𝐺𝐺𝑁𝑁) follow random Gaussian distribution. b) Transfer characteristics of array 
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elements of a representative WGN generator and c) corresponding histogram of output current 

values (𝐼𝐼𝑀𝑀 = 𝐺𝐺𝑀𝑀𝑉𝑉𝐷𝐷𝑃𝑃) read at 𝑉𝑉𝐵𝐵𝐵𝐵 = 0 V with 𝑉𝑉𝐷𝐷𝑃𝑃 = ±1 V constituting the 𝐼𝐼𝑁𝑁𝑁𝑁𝑁𝑁𝑃𝑃𝐹𝐹 = [𝐼𝐼1 𝐼𝐼2 𝐼𝐼3 … . 𝐼𝐼𝑀𝑀]. 𝐼𝐼𝑁𝑁𝑁𝑁𝑁𝑁𝑃𝑃𝐹𝐹 follows a zero mean Gaussian distribution with standard deviation of 𝜎𝜎𝑁𝑁 = 50 pA/µm. Note 

that different arrays can be preprogrammed to obtain 𝐼𝐼𝑁𝑁𝑁𝑁𝑁𝑁𝑃𝑃𝐹𝐹 with different 𝜎𝜎𝑁𝑁. The CA adds WGN 

to the photocurrent and converts it into presynaptic voltage (𝑉𝑉𝑃𝑃𝑃𝑃𝑃𝑃) to be applied to the MoS2 based 

artificial neuron (AN). Since we use resistive network, the noise current transforms into noise 

voltage with standard deviation, 𝜎𝜎𝑃𝑃 = 𝑅𝑅𝐿𝐿𝜎𝜎𝑁𝑁. d) 𝑉𝑉𝑃𝑃𝑃𝑃𝑃𝑃  and e) corresponding color map for the letter 

‘N’ after the transduction process using MoS2 WGNA for different 𝜎𝜎𝑃𝑃. f) Corresponding post-

synaptic current (𝐼𝐼𝑃𝑃𝑃𝑃𝑃𝑃) and g) 𝐼𝐼𝑃𝑃𝑃𝑃𝑃𝑃 map obtained from MoS2 AN with a preprogrammed threshold 

voltage of 𝑉𝑉𝑇𝑇𝑇𝑇 = 1.5 V. Note that, for 𝑉𝑉𝑃𝑃𝑃𝑃𝑃𝑃 < 𝑉𝑉𝑇𝑇𝑇𝑇 the MoS2 AN does not invoke any observable 

current response as in the case of low 𝜎𝜎𝑃𝑃. For higher 𝜎𝜎𝑃𝑃, there are more threshold crossing events 

resulting in more brighter pixels in the 8×8 encrypted image of the letter ‘N’. 

 

Figure 4. Strength of biomimetic encryption.  Colormaps of likelihood or probability of (a) true 

positive (𝑝𝑝𝑇𝑇𝑃𝑃), (b) false positive (𝑝𝑝𝐹𝐹𝑃𝑃), and (c) detectivity (𝐷𝐷 =  𝑝𝑝𝑇𝑇𝑃𝑃 − 𝑝𝑝𝐹𝐹𝑃𝑃) as a function of 𝜎𝜎𝑃𝑃 

for 𝑃𝑃 = 50 encoders. (d) Corresponding population means. True positive (TP) is an event when a 

bright pixel in the encoded image corresponds to a bright pixel in the original image, and false 

positive (FP) is an event when a bright pixel in the encoded image corresponds to a dark pixel in 

the original image. At low noise level, there is hardly any FP, i.e. low 𝑝𝑝𝐹𝐹𝑃𝑃, but the likelihood of 

detecting the letter ‘N’ remains low due to limited threshold crossing events for the original bright 

pixels, i.e. low 𝑝𝑝𝑇𝑇𝑃𝑃. At high noise level, both bright and dark pixels corresponding to the original 

image cross the encoder threshold resulting in high 𝑝𝑝𝑇𝑇𝑃𝑃, and 𝑝𝑝𝐹𝐹𝑃𝑃, and, therefore, low 𝐷𝐷. However, 

at an intermediate noise, the detectivity reaches its maximum value. Note that the population mean 



27 

 

for 𝐷𝐷 exhibits a non-monotonic trend. e) The number of brute force trials (BFTs) by the 

eavesdropper, necessary to identify the letter ‘N’ as a function of 𝜎𝜎𝑃𝑃. Note that BFT = 1/𝐷𝐷𝑃𝑃, 

where, 𝑆𝑆 = 8×8 = 64, is the size of the image. The number of BFTs are found to be astronomical 

irrespective of the amount of noise. f) The average energy expenditure for the encryption process 

as a function of 𝜎𝜎𝑃𝑃. g) A fully connected artificial neural network (ANN) with 100 neurons in the 

hidden layer and 10 neurons in the output layer, trained using gradient decent algorithm with 

learning rate of 0.001 to recognize MNIST data set for digit classification. Rectified linear unit is 

used as the activation function. The training and testing sets consisted of 60,000 and10,000 images, 

respectively. High convergence accuracy of 90.6% and inference accuracy of 92.2% is achieved. 

h) Representative MNIST images with white Gaussian noise (WGN) of different standard 

deviation (𝜎𝜎) binarized at a threshold of 1.5 mimicking our MoS2 based artificial neural encoder. 

i) Average inference accuracy for 10,000 encrypted images as a function of 𝜎𝜎. A non-monotonic 

trend is seen. However, irrespective of 𝜎𝜎, the inference accuracy remains low indicating the 

robustness of our biomimetic encryption to trained ANNs.   

 

Figure 5. Voting-based decryption of encrypted information. a) Number of votes 

corresponding to each pixel of the encoded images of the letter ‘N’ received from 𝑃𝑃 = 50 encoders 

for different 𝜎𝜎𝑃𝑃. A vote is registered when the encoded pixel is bright, i.e. 𝐼𝐼𝑃𝑃𝑃𝑃𝑃𝑃 > 10 pA. The vote 

is a true positive vote (TPV) if the corresponding pixel in the original image is also bright, whereas 

the vote is a false positive vote (FPV) if the corresponding pixel in the original image is dark. 

Probability distribution for b) TPVs  (𝑝𝑝𝑇𝑇𝑃𝑃𝑃𝑃) and c) FPVs (𝑝𝑝𝐹𝐹𝑃𝑃𝑃𝑃) corresponding to (a). Insets show 

the expected number of TPV, i.e. 〈𝑁𝑁𝑇𝑇𝑃𝑃𝑃𝑃〉 = ∑ 𝑛𝑛𝑝𝑝𝑇𝑇𝑃𝑃𝑃𝑃(𝑛𝑛)𝑃𝑃𝑛𝑛=1 , and FPV, i.e., 〈𝑁𝑁𝐹𝐹𝑃𝑃𝑃𝑃〉 =∑ 𝑛𝑛𝑝𝑝𝐹𝐹𝑃𝑃𝑃𝑃(𝑛𝑛)𝑃𝑃𝑛𝑛=1 . d) The colormap of correlation coefficient (CC) between the original and the 
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decrypted images of the letter ‘N’ as a function of 𝜎𝜎𝑃𝑃 and 𝑀𝑀𝑃𝑃, when encryption is done by 𝑃𝑃 = 50 

encoder with encoding threshold of 𝑉𝑉𝑇𝑇𝑇𝑇 = 1.5 V. Here, 𝑀𝑀𝑃𝑃 is the minimum number of votes 

required to mark a pixel as bright. Note that for a given 𝜎𝜎𝑃𝑃, there is an optimum 𝑀𝑀𝑃𝑃, that allows 

accurate decryption of the encoded image, i.e. CC = 1. e) The colormap of CC between the original 

and the decrypted image of the letter ‘N’ as a function of 𝑉𝑉𝑇𝑇𝑇𝑇 and 𝑀𝑀𝑃𝑃 for 𝜎𝜎𝑃𝑃 = 0.8 V and 𝑃𝑃 = 50. 

Note that without prior knowledge of 𝜎𝜎𝑃𝑃, 𝑃𝑃, and 𝑉𝑉𝑇𝑇𝑇𝑇 it is difficult to determine 𝑀𝑀𝑃𝑃 and hence 

decode the information.  
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