1. Ahmed F, Rafii M, Ismail M, Juraimi A, Rahim H, Asfaliza R, Latif M. Waterlogging tolerance of crops: breeding, mechanism of tolerance, molecular approaches, and future prospects. Biomed Res Int. 2013; 963525.
2. Herzog M, Striker G, Colmer T, Pedersen O. Mechanisms of waterlogging tolerance in wheat-a review of root and shoot physiology. Plant Cell Environ. 2016; 39(5): 1068-86.
3. Ghobadi ME, Ghobadi M, Zebarjadi A. Effect of waterlogging at different growth stages on some morphological traits of wheat varieties. Int J Biometeorol. 2017; 67.
4. Nguyen T, Tuan P, Mukherjee S, Son S, Ayele B. Hormonal regulation in adventitious roots and during their emergence under waterlogged conditions in wheat. J Exp Bot. 2018; 69(16): 4065-82.
5. Bailey-Serres J, Lee SC, Brinton E. Waterproofing crops: effective flooding survival strategies. Plant Physiol. 2012; 160: 1698-709.
6. Yamauchi T, Colmer TD, Pedersen O, Nakazono M. Regulation of root traits for internal aeration and tolerance to soil waterlogging-flooding stress. Plant Physiol. 2018; 176(2):1118-30.
7. Nishiuchi S, Yamauchi T, Takahashi H, Kotula L, Nakazono M. Mechanisms for coping with submergence and waterlogging in rice. Rice. 2012; 5: 2.
8. Christianson J, Llewellyn D, Dennis E, Wilson I. Global Gene Expression Responses to Waterlogging in Roots and Leaves of Cotton (Gossypium hirsutum L.). Plant Cell Physiol. 2010; 51(1): 21-37.
9. Zhang Y, Kong X, Dai J, Luo Z.; Li Z, Lu H, Xu S, Tang W, Zhang D, Li W, Xin C, Dong H. Global gene expression in cotton (Gossypium hirsutum L.) leaves to waterlogging stress. Plos One. 2017; 12(9): e0185075.
10. Lee YH, Kim KS, Jang YS, Hwang JH, Lee DH, Choi IH. Global gene expression responses to waterlogging in leaves of rape seedlings. Plant Cell Rep. 2014; 33: 289-99.
11. Du HW, Zhu JX, Su H, Huang M, Wang HW, Ding SC, Zhang BL, Luo A, Wei SD, Tian XH, Xu YB. Bulked segregant RNA-seq reveals differential expression and snps of candidate genes associated with waterlogging tolerance in maize. Front Plant Sci. 2017; 8: 1022.
12. Arora K, Panda KK, Mittal S, Mallikarjuna MG, Rao AR, Dash PK, Thirunavukkarasu N. RNAseq revealed the important gene pathways controlling adaptive mechanisms under waterlogged stress in maize. Scientific Reports. 2017; 7: 10950.
13. Qi XH, Xu XW, Lin XJ, Zhang WJ, Chen XH. Identification of differentially expressed genes in cucumber (Cucumis sativus L.) root under waterlogging stress by digital gene expression profile. Genomics. 2012; 99: 160-8.
14. Ahsana N, Lee DG, Lee SH, Kang KY, Bahk JD, Choi MS, Lee IJ, Renaut J, Lee BH. A comparative proteomic analysis of tomato leaves in response to waterlogging stress. Physiol Plant. 2007; 131: 555-0.
15. Xu XW, Ji J, Ma XT, Xu Q, Qi XH, Chen XH. Comparative proteomic analysis provides insight into the key proteins involved in cucumber (Cucumis sativus L.) adventitious root emergence under waterlogging stress. Front Plant Sci. 2016; 7: 1515.
16. Luan HY, Shen HQ, Pan YH, Guo BJ, Lv C, Xu RG. Elucidating the hypoxic stress response in barley (Hordeum vulgare L.) during waterlogging: A proteomics approach. Scientific Reports. 2018; 8: 9655.
17. Zhang JY, Huang SN, Wang G, Xuan JP, Guo ZR. Overexpression of Actinidia deliciosa pyruvate decarboxylase 1 gene enhances waterlogging stress in transgenic Arabidopsis thaliana. Plant Physiology and Biochemistry. 2016; 106: 244e252.
18. Li CY, Jiang D, Wollenweber B, Li Y, Dai TB, Cao WX. Waterlogging pretreatment during vegetative growth improves tolerance to waterlogging after anthesis in wheat. Plant Science. 2011; 180: 672-8.
19. Nguyen TN, Son SH, Jordan MC, Levin DB, Ayele BT. Lignin biosynthesis in wheat (Triticum aestivum L.): its response to waterlogging and association with hormonal levels. BMC Plant Biology. 2016; 16: 28.
20. Hamonts K, Clough TJ, Stewart A, Clinton PW, Richardson AE, Wakelin SA, O’Callaghan M, Condron LM. Effect of nitrogen and waterlogging on denitrifier gene abundance, community structure and activity in the rhizosphere of wheat. FEMS Microbiol Ecolo. 2013; 83: 568-84.
21. Jiang D, Fan XM, Dai TB, Cao WX. Nitrogen fertiliser rate and post-anthesis waterlogging effects on carbohydrate and nitrogen dynamics in wheat. Plant Soil. 2008; 304: 301-14.
22. Komatsu S, Hiraga S, Yanagawa Y. Proteomics Techniques for the Development of Flood Tolerant Crops. J Proteome Res. 2012; 11: 68-78.
23. Alam I, Lee DG, Kim KH, Park CH, Sharmin SA, Lee H, Oh KW, Yun BW, Lee BH. Proteome analysis of soybean root under waterlogging stress at an early vegitatibe stage. J Biosci. 2010; 35: 49-62.
24. Komatsu S, Kamal AHM, Hossain Z. Wheat proteomics: proteome modulation and abiotic stress acclimation. Front Plant Sci. 2014; 5: 684
25. Romina P, Abeledo LG, Miralles DJ. Identifying the critical period for waterlogging on yield and its components in wheat and barley. Plant Soil. 2014; 378: 265-77.
26. Lina J, Shan X, Jiang C, Hongjian G, Ligan Z. The effect of persistent flooding on the kinetic nutrient absorption and output of wheat. J Chinese Agricultural Science Bulletin. 2012; 28(27): 113-7.
27. Beinert H, Holm RH, Münck E. Iron-sulfur clusters: nature’s modular, multipurpose structures. Science. 1997; 277: 653-9.
28. Lill R. Function and biogenesis of iron-sulphur proteins. Nature. 2009; 460: 831-8.
29. Sasaki S, Minamisawa K, Mitsui H. A Sinorhizobium meliloti RpoH-Regulated Gene Is Involved in Iron-Sulfur Protein Metabolism and Effective Plant Symbiosis under Intrinsic Iron Limitation. J Bacteriol. 2016; 198: 2297-306.
30. Khan MS, Khraiwesh B, Pugalenthi G, Gupta RS, Singh J, Duttamajumder SK, Kapur R. Subtractive hybridization-mediated analysis of genes and in silico prediction of associated microRNAs under waterlogged conditions in sugarcane (Saccharum spp.). FEBS Open Bio. 2014; 4: 533-41.
31. Zeng Y, Chung K, Li B, Lai C, Lam S, Wang X, Cui Y, Gao C, Luo M, Wong K, Schekman R, Jiang L. Unique COPII component AtSar1a/AtSec23a pair is required for the distinct function of protein ER export in Arabidopsis thaliana. Proc Natl Acad Sci USA. 2015; 112(46): 14360-5.
32. Singh AK, Kumar R, Pareek A, Sopory SK, Singla-Pareek SL. Overexpression of rice CBS domain containing protein improves salinity, oxidative, and heavy metal tolerance in transgenic tobacco. Mol Biotechnol. 2012; 52: 205-16.
33. Hao Q, Shang W, Zhang C, Chen H, Chen L, Yuan S, Chen S, Zhang X, Zhou X. Identification and Comparative Analysis of CBS Domain-Containing Proteins in Soybean (Glycine max) and the Primary Function of GmCBS21 in Enhanced Tolerance to Low Nitrogen Stress. Int J Mol Sci. 2016; 17(5): 620.
34. Vinyard DJ, Ananyev GM, Dismukes GM. Photosystem II: The Reaction Center of Oxygenic Photosynthesis. Annu Rev Biochem. 2013; 82: 577-606
35. Pan XY, Zheng HY, Zhao JY, Xu YJ, Li XX. ZmCCD7/ZpCCD7 encodes a carotenoid cleavage dioxygenase mediating shoot branching. Planta. 2016; 243(6): 1407-18.
36. Rubio-Moraga A, Rambla JL, Fernández-de-Carmen A, Trapero-Mozos A, Ahrazem O, Orzáez D, Granell A, Gómez-Gómez L. New target carotenoids for CCD4 enzymes are revealed with the characterization of a novel stress-induced carotenoid cleavage dioxygenase gene from Crocus sativus. Plant Mol Biol. 2014; 86(4-5): 555-69.
37. Baek K, Seo PJ, Park CM. Activation of a Mitochondrial ATPase Gene Induces abnormal Seed Development in Arabidopsis. Mol Cells. 2011; 31(4): 361-9.
38. Ksas B, Becuwe N, Chevalier A, Havaux M. Plant tolerance to excess light energy and photooxidative damage relies on plastoquinone biosynthesis. Sci Rep. 2015; 5: 10919.
39. Gong W, Xu F, Sun J, Peng Z, He S, Pan Z, Du X. iTRAQ-Based Comparative Proteomic Analysis of Seedling Leaves of Two Upland Cotton Genotypes Differing in Salt Tolerance. Front Plant Sci. 2017; 8: 2113.
40. Ahsan N, Lee DG, Lee SH, Kang KY, Bahk JD, Choi MS, Lee IJ, Renaut J, Lee BH. A comparative proteomic analysis of tomato leaves in response to waterlogging stress. Physiol Plant. 2007; 131: 555-70.
41. Yan SP, Zhang QY, Tang ZC, Su WA, Sun WN. Comparative proteomic analysis provides new insight into chilling stress response in rice. Mol Cell Proteomics. 2006; 5: 484-96.
42. Mano Y, Omori F. Flooding tolerance in interspecific introgression lines containing chromosome segments from teosinte (Zea nicaraguensis) in maize (Zea mays subsp.mays). Annals of Botany. 2013; 112: 1125-39.
43. Ding JF, Su SN, Liang P. Effect of waterlogging at elongation or after anthesis on grain yield and remobilization of dry matter and nitrogen in wheat. Journal of Triticeae Crops. 2017; 37(11): 1473-79.
44. Araki H, Hamada A, Hossain M, Takahashi T. Waterlogging at jointing and/or after anthesis in wheat induces early leaf cence and impairs grain filling. Field Crops Research. 2012; 137: 27-36.
45. Li CY, Cai J, Jiang D, Dai TB, Cao WX. Effects of hardening by pre-anthesis waterlogging on grain yield and quality of post-anthesis waterlogging wheat (Triticum aestivum L. cv Yangmai 9). Acta Ecologica Sinica. 2011; 31: 1904-10.
46. Jia XY, He LH, Jing RL, Li RZ. Calreticulin: conserved protein and diverse functions in plants. Physiol Plant. 2009; 136: 127-38.
47. Kim J, Nguyen N, Nguyen N, Hong S, Lee H. Loss of all three calreticulins, CRT1, CRT2 and CRT3, causes enhanced sensitivity to water stress in Arabidopsis. Plant Cell Rep. 2013; 32: 1843-3.