Animals and dental operation
All procedures and protocols were approved by the Ethics Committee of Shandong University. Twenty WT male C57BL/6N mice (6–8 weeks of age, weight 18–21 g) were obtained from the Animal Centre of Shandong University (Jinan, China). Twenty miR-21-5p−/− C57BL/6 knockout (miR-21-5p KO) mice were bred from miR-21-5p KO mice (two males, two females) purchased from Southeast University (Nanjing, China). KO mouse genotyping results are listed in Supplementary 1.WT mice were randomly divided into a control group (WT-NC) and unilateral anterior crossbite group (WT-UAC). MiR-21-5p KO mice were randomly divided into a control group (KO-NC) and unilateral anterior crossbite group (KO-UAC). Metal tubes were placed in the left maxillary incisor and mandibular incisor of the intervention group, and the intervention time was 3 weeks. The operation steps of the UAC model were performed as described [19]. Mice in the NC groups underwent all procedures, but no metal tube was bonded. All mice received a standardized diet.
Histology and immunohistochemistry staining (IHC)
After three weeks, six mice (12 TMJs) were randomly selected from each group for dissection. After fixation in paraformaldehyde, the samples were decalcified in EDTA for four weeks, then embedded in paraffin, and 5 µm thick sections were prepared. After deparaffinization, the sections were stained with toluidine blue (TB) (Sigma-Aldrich, Poole, UK). Collagen fibres and ACAN are the main extracellular matrix components of cartilage and can be stained blue-violet by the basic dye TB. Image-Pro Plus 6.0 software was used to quantify the average optical density (AOD) values of the stained area. Blue-stained areas were selected as the uniform standard for evaluating all images. Each image was analysed to obtain the integrated optical density (IOD) and the area of the pixel (AREA) of the tissue. Finally, the AOD (AOD = IOD/AREA) was determined. Using the image scale (50 µm) as the standard, the cartilage thickness (mm) at 5 positions was measured for each image, and the average value was obtained.
For IHC, the sections were dewaxed and 0.1% trypsin was applied to each section for 10 min at 37 °C, and the endogenous peroxidase activity of the sections was quenched using 3% H2O2 for 10 min. Then, sections were blocked with 5% bovine serum albumin (BSA) for 30 min and incubated with primary antibody against aggrecan (ACAN) (1:100; Abcam, MA, USA) at 4 °C overnight. Then, the sections were incubated with the secondary antibody and horseradish peroxidase-conjugated avidin (BOSTER, SA1022, China). For IHC staining, the percentages of positively stained cells were determined. The AOD of the positive area was measured.
Target prediction and luciferase reporter assay
To predict the target relationship between miR-21-5p and Spry1, a miRNA prediction software packages, miRanda (http://www.microrna.org/microrna/home.do), which is widely used to confirm the theoretical target genes of miRNAs, was used in this study. To further verify the reliability of the target gene prediction, MCCs were cotransfected with a luciferase reporter containing the target fragment (Spry1-3′ UTR-WT) or with a vector carrying the mutant-type 3′ UTR of Spry1 (Spry1-3′ UTR-MUT) and with miR-21-5p mimic or the corresponding negative control (NC). The amplified primers sequences of 3’UTR of Spry1 were as follows: Spry1 sense: CTT TGT GCC TAC CCT GCT TGC TCT GCT ACC; Spry1 anti-sense: AGG GCG GTG GGT CCA GTC GTA ACA GC. After 48 h, the luciferase activity was calculated using the dual-luciferase reporter assay system according to the manufacturer’s instructions (Promega, Madison, WI, USA).
Culture and identification of condylar chondrocytes
MCCs were isolated from mice (2-week-old, male, 5 g). Samples were minced into pieces of less than 1 mm3 with microsurgical scissors, followed by digestion at 37 °C with 3 mg/ml dispase (Sigma-Aldrich, USA) 1 x and 2.5 mg/ml collagenase type II in DMEM for 2 h with stirring every 20 min. The single cell suspensions were cultured (5% CO2, 37 °C) in 79% DMEM supplemented with 20% FBS, 100 mg/ml streptomycin and 100 mg/ml penicillin solution for 5 to 7 days before use. The cells were digested with trypsin-EDTA and passaged into a T25 culture flask for subsequent experiments. Additionally, the chondrocytes were validated through immunocytochemical identification of type II collagen (Supplementary 2).
Cell transfection
MCCs were cultured to 85% confluence in 6-well plates. Transfection of MCCs using Lipofectamine 2000 (Thermo Fisher, USA, catalogue no 11668-019, 4 µl/well) was performed with the synthetic precursors of miR-21-5p called miR-21-5p mimic, mimic negative control (mimic NC), miR-21-5p inhibitor and inhibitor negative control (inhibitor NC) (Genepharma, Shanghai, China). The cells were transfected with miR-21-5p mimic or inhibitor to a final concentration of 50 nM with Lipofectamine 2000 according to the manufacturer’s protocols. After 6 h, the medium was replaced with DMEM supplemented with 20% FBS. After 48 h, RNA and protein were extracted and analysed.
The vector for Spry1 overexpression was GV141, the enzyme digestion cloning site was XhoI/KpnI, and the empty vector was used as the control (GeneChem, Shanghai, China). The target gene sequence for chemical synthesis and the primer sequence for identification of the recombinant plasmid is listed in Supplementary 3. MCCs were transfected with the aforementioned vectors using Lipofectamine 2000. For Spry1 knockdown, chondrocytes were transfected with small interference RNA of mouse Spry1 (si-Spry1) to suppress Spry1 expression. Chondrocytes were transfected with Spry1-specific small interfering RNA (si-Spry1) or negative control siRNA (si-NC) (GeneChem, Shanghai, China) using Lipofectamine 2000. After transfection, the chondrocytes were incubated with 10 ng/ml IL-1β (R&D systems, Abingdon, UK) for another 24 h. The transfection efficiency was determined using Western blotting. The sequences of the mimic, inhibitor, siRNA are listed in Supplementary Table 1.
Western blotting
Condylar cartilage was incubated in liquid nitrogen and ground to a fine powder. MCCs were collected from plates and washed with DPBS. Tissue and cells were lysed using RIPA with 1% phenylmethanesulfonyl fluoride (PMSF) (Beyotime, China) followed by centrifugation at 12,000 rpm for 15 min at 4 °C, and the resulting supernatants were quantified by the bicinchoninic acid (BCA) assay. A 10% sodium dodecyl sulfate separation gel and a concentration gel were prepared. Transfer of the proteins to nitrocellulose membranes was carried out at 60 V for 1 h and 120 V for 0.5 h. The polyvinylidene difluoride membranes (Millipore, Bedford, MA, United States) were blocked for 2 h with 5% non-fat milk. The membrane was then incubated with primary antibodies for 12 h. The blots were washed three times and incubated with secondary antibodies. After washing, the membranes were developed using an ECL Western blotting kit (Beyotime, Shanghai China). Finally, the blots were analysed quantitatively. The following antibodies were used: rabbit anti-Spry1 (1:1000; Abcam, MA, USA), rabbit anti-MMP13 (1:1000; Abcam, MA, USA), rabbit anti-VEGF (1:1000; Abcam, MA, USA), rabbit anti-ACAN (1:500; Abcam, MA, USA), rabbit anti-ERK ( 1:1000; Cell Signaling Technology, USA), rabbit anti-phospho-ERK (1:1000; Cell Signaling Technology, USA), rabbit anti-β-actin (1:1000; Beyotime, China), rabbit anti- IgG (1:5,000; Beyotime, China).
Measurement of miRNAs and mRNA expression
Total RNA was extracted from the tissues and MCCs using TRIzol Reagent (Invitrogen). For quantitative detection of miRNA, a TaqMan miRNA assay kit (Thermo Fisher, USA) was used. Purified miRNA was reverse transcribed using miRNA-specific stem-loop RT primers (Applied Biosystems, USA). Following the manufacturer’s instructions, reverse transcription–quantitative PCR (RT-qPCR) was performed in a 7500 Real Time PCR system (Applied Biosystems, USA) using SYBR® Premix Ex Taq II Kit (TaKaRa, Japan). Gene expression was normalized to U6 small nuclear RNA expression. The relative gene expression was measured by using the comparative threshold cycle (2^-ΔΔCt) method, and β-actin served as an internal control. The reaction mixtures were incubated at 95 °C for 10 min, followed by 40 cycles of 20 s at 95 °C and 60 s at 55 °C. The primers used are shown in Supplementary 4.
Toluidine blue staining
After treatment according to the experimental design, MCCs were washed three times with DPBS before staining, fixed in 4% buffered paraformaldehyde for at least 20 min at room temperature and washed with DPBS. Cells were then stained in toluidine blue solution for 10 min at 37 °C and washed with DPBS for 3 min. The staining results were observed by microscopy and quantified.
Cell immunofluorescence
MCCs were washed with DPBS three times and fixed with 4% paraformaldehyde for 15 min and then rinsed in DPBS three times, 5 min each time. For Spry1 and ACAN detection, the cells were incubated with rabbit anti-Spry1 (1:100; Abcam, MA, USA) and rabbit anti-ACAN (1:50; Abcam, MA, USA) at 4 °C, overnight. FITC-labelled goat rabbit anti-IgG (Beyotime, Shanghai, China) was used as a secondary antibody and incubated for 1 h at 37 °C. The chondrocyte nuclei were restained with 4’, 6-diamidino-2-phenylindole (DAPI) (Solarbio, Beijing, China) for 10 min. The analysis of fluorescence was performed with a confocal scanning microscope system (Carl Zeiss, Nikon).
Chick embryo in vivo angiogenesis assay
SPF-grade white eggs were purchased from Merial-Vital Company (Beijing, China). For the vascularization experiment, the cells were divided into four groups: NC, miR-21-5p inhibitor, miR-21-5p mimic, miR-21-5p mimic + U0126. After 2 days of transfection, the cells of each group were resuspended in serum-free medium (15 µl), mixed with BD Matrigel™ Basement Membrane Matrix (Corning, USA) of equal volume (15 µl each), and the mix was implanted into each egg, after which the eggs were returned to the incubator for further incubation. The embryo were incubated at 37.5 ± 0.5 °C and relative humidity of 60–80%. The position of the air chamber was marked on the surface of normal egg shells, part of the egg shell was peeled off to expose the egg white membrane and the intima was carefully removed with sterile tweezers. At embryonic day 10, Matrigel mixed with different groups of cells was implanted into each egg. After 72 h, images of the region surrounding the Matrigel were taken, and vascular branches were calculated.
Statistical analysis
Bars represent the standard error of the mean (SEM) from three independent experiments. SPSS 20.0 and Image-Pro Plus 6.0 software were used for statistical and image analyses. The data were graphically presented using GraphPad Prism 7.0. Statistical significance between two groups was assessed by Student’s t-test. For multiple comparisons, one-way analysis of variance (ANOVA) followed by Newman-Keuls post hoc tests was used. Data with a p-value less than or equal to 0.05 were considered significant.