
Deep Learning Based Attack Detection in IIoT using
Two-Level Intrusion Detection System
Kathiroli Raja ( kathirolig@gmail.com)

Anna University Chennai
Krithika Karthikeyan

Anna University Chennai
Abilash B

Anna University Chennai
Kapal Dev

University of Johannesburg
Gunasekaran Raja

Anna University Chennai

Research Article

Keywords: Internet of Things, Intrusion Detection System, Deep Learning, Dragon�y Algorithm, Dempster
Shafer’s theory

Posted Date: November 3rd, 2021

DOI: https://doi.org/10.21203/rs.3.rs-997888/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

https://doi.org/10.21203/rs.3.rs-997888/v1
mailto:kathirolig@gmail.com
https://doi.org/10.21203/rs.3.rs-997888/v1
https://creativecommons.org/licenses/by/4.0/

Springer Nature 2021 LATEX template

Deep Learning Based attack detection in IIoT

using Two-Level Intrusion Detection System

Kathiroli Raja1*, Krithika Karthikeyan2†, Abilash B3†, Kapal

Dev4† and Gunasekaran Raja5†

1Department of Computer Technology, Madras Institute of
Technology, Anna University, Chennai, 600044, Tamil Nadu,

India.
2Department of Computer Technology, Madras Institute of

Technology, Anna University, Chennai, 600044, Tamil Nadu,
India.

3Department of Computer Technology, Madras Institute of
Technology, Anna University, Chennai, 600044, Tamil Nadu,

India.
4Department of Institute of Intelligent Systems, University of

Johannesburg, Johannesburg, 600044,South Africa.
5Department of Computer Technology, Madras Institute of

Technology, Anna University, Chennai, 600044, Tamil Nadu,
India.

*Corresponding author(s). E-mail(s): kathirolig@gmail.com;
Contributing authors: krithikamit17@gmail.com;
abilashbalaraman6@gmail.com; kapald@uj.ac.za;

dr.r.gunasekaran@ieee.org;
†These authors contributed equally to this work.

Abstract

The Industrial Internet of Things (IIoT), also known as Industry 4.0,
has brought a revolution in the production and manufacturing sectors as
it assists in the automation of production management and reduces the
manual effort needed in auditing and managing the pieces of machin-
ery. IoT-enabled industries, in general, use sensors, smart meters, and
actuators. Most of the time, the data held by these devices is sur-
passingly sensitive and private. This information might be modified,

1

Springer Nature 2021 LATEX template

2 Article Title

stolen, or even the devices may be subjected to a Denial of Service
(DoS) attack. As a consequence, the product quality may deteriorate
or sensitive information may be leaked. An Intrusion Detection System
(IDS), implemented in the network layer of IIoT, can detect attacks,
thereby protecting the data and devices. Despite substantial advance-
ments in attack detection in IIoT, existing works fail to detect certain
attacks obfuscated from detectors resulting in a low detection per-
formance. To address the aforementioned issue, we propose a Deep
Learning-based Two Level Network Intrusion Detection System (DL-
TL-NIDS) for IIoT environment, emphasizing challenging attacks. The
attacks that attain low accuracy or low precision in level-1 detection
are marked as challenging attacks. Experimental results show that the
proposed model, when tested against TON IoT, figures out the chal-
lenging attacks well and achieves an accuracy of 99.97%, precision of
95.62%, recall of 99.5%, and F1-score of 99.65%. The proposed DL-TL-
NIDS, when compared with state-of-art models, achieves a decrease in
false alarm rate to 2.34% (flagging normal traffic as an attack) in IIoT.

Keywords: Internet of Things, Intrusion Detection System, Deep Learning,
Dragonfly Algorithm, Dempster Shafer’s theory

1 Introduction

IDS can be seen as either hardware or software which detects the anomalous
activity and report it to the administrator. It helps in alleviating the impact of
the attack by informing the system administrator prior. James Anderson pre-
sented the definition of IDS in 1980[1]. He examined access logs and server case
logs using a collection of methods. Dorothy E. Denning created an anomaly-
based IDS based on statistics in 1986 and called it Intrusion Detection Expert
System (IDES). Teresa F. Lunt applied Artificial Neural Networks (ANN) to
IDES to boost it. Wisdom & Sense created a rule-based anomaly detector
using mathematical analysis. Researchers at the University of California, Davis
developed the Distributed Intrusion Detection System in 1991 (DIDS).

In general, based on the type of detection, there are two types of IDS,
Signature-based detection and Anomaly-based detection [2]. Signature-based
detection matches the incoming network traffic with the existing patterns
extracted. This is also called Misuse based detection or Knowledge-based detec-
tion. An Anomaly-based Intrusion Detection System (AIDS) is used to detect
unknown attacks. It works on the principle that any abnormal network traffic
could be malicious. As a result, such network activity can be identified as an
exception and subjected to further investigation to determine the nature of
the traffic. Machine Learning (ML) algorithms are proven to work effectively
and are reliable for anomaly detection [3].

Springer Nature 2021 LATEX template

Article Title 3

Many research papers have presented machine learning based IDS. Both
supervised and unsupervised are used to detect intrusions. Ensemble tech-
niques have been used to detect attacks [4]. Semi-supervised models have also
been found beneficial to balance the dataset to detect anomalies [5]. Attacks
can also be detected using unsupervised approaches such as clustering and Self
Organized Maps (SOM) [6, 7]. Later, deep learning models have been used to
train intrusion detection models. This is because machine learning techniques
normally require a huge processing time. Deep learning has been employed as
it has the capability of training large datasets. It can be combined with big
data techniques to train a huge dataset and proven to detect better than other
methods [8]. It has been proven that it can reduce the false positive rate [9].

The challenges faced in building the IDS are twofold: to begin with, an
imbalanced dataset will lead to a low detection rate of the minority attacks;
secondly, even though the IDS model can detect the vast majority of assaults,
some attacks go undetected due to misclassification. Such attacks necessi-
tate sophisticated identification. Hence, the proposed work aims to develop
DL-TL-NIDS that detects malicious activity. The following workflow is used;
initially, the dataset is balanced and standardized. In the first-level detection,
Deep Neural Networks (DNN) are trained and tested. The attacks that get
a lower detection rate or lower precision are declared as challenging attacks.
The challenging attacks are fed to second-level detection. Second-level detec-
tion employs two models namely the Negative Selection Algorithm (NSA) and
Deep Neural Networks (DNN) trained using Dragonfly Algorithm. Dempster
Shafer’s combination rule is used to combine the outputs of both models. We
have evaluated our work against CICIDS 2017, CICIDS 2018 [10] and TON IoT
datasets[11–18].

2 Motivation

The major concern for IIoT is security and privacy [19]. The real-world exam-
ples demonstrate that security in IIoT environments has become a necessity
since failure to do so has severe consequences. Many researchers have advocated
the use of Intrusion Detection Systems (IDS) to identify and mitigate attacks.
However, IDS in the IIoT context poses several problems. The difficulties are
listed below.

1. IIoT consists of heterogeneous components interconnected via networks.
Due to the distributed nature of IIoT devices, hackers can simply get access
to them via networks [19–21].

2. IIoT devices generate massive data on benign traffic and less data on
intrusions that occur sporadically [22–24]. That is, the dataset’s distribu-
tion is extremely skewed, which has an impact on the model’s detection
performance.

3. Even though IDS can be constructed with Machine Learning methods, it
might lead to overfitting when a large dataset is used for training [25].

Springer Nature 2021 LATEX template

4 Article Title

We propose a DL-TL-NIDS to combat the above challenges. The main
contributions of our work are as follows

1. The dispersion of the training dataset has a dormant impact on the behavior
of the model. Hence oversampling techniques have been employed to balance
the dataset.

2. Deep Learning was employed as it can process a huge amount of data and
can avoid overfitting.

3. We concentrate on challenging attacks. Attacks that are difficult to detect
by a model are termed challenging attacks. Accuracy and precision were the
measures used to evaluate the model’s performance in detecting attacks.

4. The proposed DL-TL-NIDS is capable of identifying challenging attacks. In
the first level, the Deep Neural Networks separate challenging attacks from
other attacks (termed as easy-to-detect attacks). Second-level detection will
be applied only to challenging attacks. Easy-to-detect attacks will not be
subjected to second-level detection to avoid additional computations.

5. In second-level detection, two detectors namely the NSA and DNN (trained
using enhanced Dragonfly Algorithm) were employed. The output obtained
from each detector is the probability of a test data being an attack. Demp-
ster Shafer’s combination rule is used to fuse the decision obtained from
the detectors.

3 Literature Survey

In the IIoT, attacks majorly occur in (1) Operational Technology (OT) and (2)
Information Technology (IT). IP spoofing, eavesdropping, bruteforce password
guessing, and data manipulation may occur at the OT level for IoT devices
and controllers such as programmable logic controllers, gateways, and operator
stations. Phishing, SQL injection, brute force attacks, and DoS attacks can
affect IT level components such as data centers, online and mail services, edge
devices, and mobile devices. The following are some of the consequences due
to the aforementioned attacks in IIoT.

1. Business secret data can be stolen by competitors, resulting in the manu-
facture of duplicate items.

2. Data collected from sensors and smart meters can be tampered with,
resulting in a loss of product quality.

3. End-user devices and IoT devices could be compromised, resulting in service
unavailability.

Hence it is essential to detect and mitigate the attacks in the IIoT context.
Many researchers have proposed various types of IDS or the IIoT environment
that are capable of detecting attacks. Aboelwafa et.al [26] detected falsi-
fied data injection attacks using Autoencoders (AE) and cleaned them using
Denoising Autoencoders (DAE). The evaluation was done via simulation with
an accuracy of 97.02%. Maede et al [27] addressed the use of machine learn-
ing approaches to identify attacks. The machine learning models were tested

Springer Nature 2021 LATEX template

Article Title 5

on real-world test datasets and were successful in detecting backdoor, com-
mand injection, and SQL injection. However, the study lacks complex hybrid
models, and false negatives are significant. To discover abnormal behaviors,
Li et al [28] employed time series analysis. The researchers used multilayer
Long Short-Term Memory (LSTM) and an enhanced bidirectional LSTM. The
suggested work was evaluated against the CTU-13 and AWID datasets, with
95.01% and 97.58% accuracy, respectively. Mahbub et al [29] concentrated
their research on selecting adversarial samples that can deceive a classifier. The
models were retrained after eliminating adversarial samples. The samples were
chosen based on the malware’s cluster center’s closeness and likelihood calcu-
lated using Kernel-Based Learning (KBL). The work was evaluated against a
publicly available dataset with an accuracy of 86.08%.

Yan et al. [30] created a deep learning model, trained using mini-batch
gradient descent with adjustable learning rate and momentum. The work was
evaluated against web domains obtained from Alex top1w and 360 netlab and
achieved a precision of approximately 90%. Bhunia et.al [31] proposed Soft-
Things, a Software Defined Networks (SDN) based IIoT security framework.
The machine learning algorithms were employed at the SDN controller to mon-
itor the network. The precision of SoftThings was tested using the mininet
emulator, and it was found to be 98%. Deep-IFS, implemented in a Fog environ-
ment, was proposed by Abdel-Basset et al [19]. The master fog node distributes
the training parameters to the workers and then combines their decisions. The
suggested work was tested against the Bot-IIoT dataset, yielding a 98.1% accu-
racy. Latif et.al [32] proposed a Deep Random Neural Network (DRaNN) and
evaluated using UNSW-NB15. The experimental results show that the model
was able to detect attacks with an accuracy of 99.41%.

Yao et.al proposes a Multi-level intrusion detection model framework
named MSML to overcome the imbalance of network traffic and non-identical
distribution between the training set and test set in feature space [33]. This
framework includes pure cluster extraction, pattern discovery fine-grained clas-
sification, and model updating. KDD’99 dataset was used for evaluation. The
framework can effectively distinguish known unknown pattern samples with
accuracy (99.3%). Liang et.al [34] resolves the inherent problems in IDS such
as low detection rate, low real-time performance, and high false-positive rate
by proposing a multi-feature data clustering optimization model. The clus-
ters are formed based on the distance between the cluster center and the data
point. For the NSL-KDD dataset, the average time saving is 7.8% than the
existing models. An overall detection rate (accuracy) of 97.8% is achieved. Yan
et.al [35] proposed a multi-level DDoS mitigation framework to identify DDoS
attacks in the IIoT. The proposed approach was evaluated against real-time
DDoS attacks generated using the ping of death and TCP SYN flood.

In [36], the Apache framework is used and proposes a hybrid algorithm to
exploit deep learning and machine learning advantages. The latent features
are extracted using stacked autoencoders. The accuracy achieved in ISCX
2012 dataset is 90%. The overall accuracy of 99% is achieved in CICIDS 2017

Springer Nature 2021 LATEX template

6 Article Title

dataset. Maharani et.al [37] presented the IIoT attack detection in the fog
layer of the IIoT environment. The proposed model employed ML models like
Decision Trees, K-means and Random Forest and was evaluated against the
KDD Cup’99 dataset. The study concluded that K-means outperformed other
algorithms, reaching a 93% accuracy rate. A non-symmetric deep autoencoder
(NDAE) was proposed in [9] for unsupervised feature learning. The benchmark
KDD Cup ’99 and NSL-KDD datasets were used for random forest evaluation,
obtaining 85.43% and 97.85% accuracy, respectively. Though the proposed
model has better overall performance, it could not detect the User to Root
(U2R) and Remote to Local (R2L) attacks. Zhong et.al [38] tried to adopt big
data for the machine learning model to train on a massive amount of data.
The behavioral and content features were extracted and used a combination of
Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN)
for the prediction. The proposed method was evaluated against the ISCX2012,
CICIDS2017, and DARPA1998 datasets.

It is inferred from the existing works that many works had presented the
overall performance of the model. However, they lacked analysis of attack-wise
performance, and single-level detection was performed. Single level detection
will be an issue when certain attacks, that are extremely harmful (eg., ran-
somware, DoS, infiltration, etc.,), cannot be identified by the model. Hence in
our proposed work, we focus on attack-wise performance and two-level detec-
tion. We propose a DL-TL-NIDS, a two-level IDS framework. At the first
level, the challenging attacks were identified and segregated using DNN. In
second-level, the challenging attacks were detected and classified using hybrid
models namely NSA and DNN(trained using enhanced dragonfly algorithm).
The decision is fused using Dempster-Shafer’s combination.

4 Proposed Methodology

This section explains the DL-TL-NIDS in detail. Figure 1 illustrates the work-
flow of DL-TL-NIDS. As mentioned earlier, challenging attacks are those
attacks identified with low precision or low accuracy by the model. The key
justification for focusing on challenging attacks is that, while the model iden-
tifies other types of attacks effectively, challenging attacks might cause the
model’s performance to deteriorate. Hence, the proposed work seeks to develop
a two-level IDS that identifies attacks in the IIoT and focuses on challenging
attacks. The sensors and smart meters in IIoT create monstrous traffic. The
data will have a wide range and magnitude. So, the data preprocessing and
normalization are done before the first-level detection.

4.1 Oversampling and Standardization

The attack distribution in the IIoT dataset is highly disproportionate as the
benign traffic spawns frequently, and the intrusion traffic seldom occurs. Hence,
balancing the dataset is necessary to overcome the variance in IIoT dataset
distribution. Attack distribution of the dataset has a significant impact on the

Springer Nature 2021 LATEX template

Article Title 7

Oversampling
and

Standardization

Hyperparameter
Optimisation

Deep Neural
Networks

Classwise
Accuracy
measure

Deep Neural
Networks (Trained

using enhanced DA)

Negative Selection
Algorithm

Dempster-Shafer's
Combination rule

Challenging
Attacks

Easy-to-Detect
attacks

Level-1 detection

Level-2 detection

Attack
classification

Attacks of high accuracy
and high precision

Network
centric

Quality

Monitoring
Tools

Automation

Sensors

Safety
IIoT

Fig. 1: Flowchart of our Proposed work

model’s performance. SMOTE, which stands for Synthetic Minority Oversam-
pling Technique, is the oversampling technique employed. SMOTE takes each
of the minority attacks and applies the nearest neighbor algorithm to find the
data points in a class that are neighbors to each other. It aids to decide the
amount of synthetic data needed to balance the dataset. For example: If the
ratio between majority to minority class is 3:1, then we need to increase the
amount of minority class by 200%. So the number of neighbors should be 2.
After finding the nearest neighbors, the algorithm takes each set of neighbors
and produces the new data point. The flowchart of SMOTE is given in Figure
2.

The data is standardized using a Z score technique. The technique uses the
mean and standard deviation of a feature. The formula of Z score is given in
equation (1):

xnorm =
x− µ

σ
(1)

Here xnorm is the normalized feature value, x is the original feature, µ is
the mean value of the feature and σ is the standard deviation of the feature
value.

4.2 Level-1 Detection

First level detection distinguishes between easy-to-detect and challenging
attacks. A challenging attack may not be appropriately classified because it
may be detected as benign or misclassified. The challenging attacks will be
handled in Level-2 detection. The components of Level-1 detection are as
follows

Springer Nature 2021 LATEX template

8 Article Title

Minority Class

Select random instance
from minority class: xi

Select random instance
among K-neighbor: xk

Create new instance
xnew=xi+rand(0,1)*|xi-xk|

Does Balancing ratio
satisfy?

Stop

Start

Identify K-nearest
neighbors: Kxi

Fig. 2: Flowchart of SMOTE

4.2.1 Hyperparameter Optimization

Hyperparameter optimization is employed to find the optimal hyperparame-
ters required for the model. Hyperparameters are the parameters set before
learning and can exert on the model’s performance (here it’s DNN). Learn-
ing rate, momentum, epoch size, batch size, kernel initialization, and dropout
regularisation are the hyperparameters considered here and optimized for a
DNN. A fairly performing baseline model is opted to perform hyperparameter
optimization. The hyperparameter optimization algorithm adopted is Ran-
dom Search. Random search picks a random set of hyperparameter values at
each instance. Since the values are random, there is a high likelihood that the
entire search space of hyperparameters is exploited. In Figure 3, we have con-
sidered two hyperparameters, hyperparameter-1 and hyperparameter-2. The
black dots represent the set of values taken by random search at each instance.
The model is trained and tested using the set of hyperparameters chosen at

Springer Nature 2021 LATEX template

Article Title 9

each instance. The random search returns the hyperparameters for which the
model works best after a fixed number of iterations.

Fig. 3: Random Search

Hyperparameter 1

Hy
pe

rp
ar

am
et

er
 2

RandomSearch

4.2.2 Deep Neural Networks

The Deep Neural Networks (DNN) are similar to ANN, however, there are more
hidden layers in DNNs. Each DNN has an input layer, multiple hidden layers,
and an output layer. Each hidden layer has several neurons. Each neuron gets
fired or remains neutral based on the inputs it receives.

In figure 4, xi is the input feature, W (i) are the weights of the connection
between neurons from layer Li to layer Li+1, yi is the output, and g is the
activation function that fires the neuron based on the computation done during
forwarding propagation. Each layer can use different activation functions. In
our proposed work, we employed the relu function for hidden layers, as it
worked better in the baseline model, and the softmax function as the activation
function for the output layer, as the output we need is in terms of probability.
The relu and softmax functions are given in (2) and (3).

softmax(gi) =
egi∑n

j=1 e
gj

(2)

relu(gi) = max(0, gi) (3)

In the above equation, gi is the output obtained from neuron i in the output
layer and n is the number of classes (the number of neurons in the output

Springer Nature 2021 LATEX template

10 Article Title

Fig. 4: Deep Neural Networks

.

.

. .
.
.

x1

x2

x3

x4

xm

y1

y2

y3

y4

yn

Input
Layer
L1

Hidden
Layer
L2

Hidden
Layer
L3

Hidden
Layer
L4

Output
Layer
L5

W(1)
W(2)

W(3) W(4)a(2) a(3)

a(4)

a(5)

layer). DNN consists of two phases: forward propagation and backpropagation.
During the forward propagation, the inputs are multiplied by weights and bias
assigned by each neuron and travel through each hidden layer, and then finally
predicts the output yi. Each neuron in hidden layer l calculates the following

gl = WT
l al−1 + bl (4)

al = g(al) (5)

In the above equation, g denotes the activation function. The DNN is
trained using backpropagation. Backpropagation employs gradient descent.
The motive of backpropagation is to update the weights such that the error
between expected and predicted output is minimal. Gradient computation
involves computing changes in weight with respect to the expected output (i.e
dW and db). The error between actual and predicted output in the output

Springer Nature 2021 LATEX template

Article Title 11

layer is calculated and backpropagated to the preceding hidden layers. The
weights and bias values are updated according to the value of gradients.

Gradient descent algorithms have many extension algorithms that are opti-
mized. One of the optimizers is the Adam optimizer. This algorithm is efficient
and it is a combination of gradient descent with momentum and the Root
Mean Square (RMS) Prop algorithm. In the momentum method, the velocity
with which the gradient is changing is calculated and RMSProp employs an
exponentially weighted average method on the second moment of the gradients
(dW2). Adam optimiser uses decays both past squared gradient (V) and past
momentum (S) calculated using (6) and (7). The adam adds bias correction
to V and S using (8) and (9). Finally, the weights are updated using (10).

V = β1S + (1− β1)dW (6)

S = β2S + (1− β2)dW
2 (7)

V =
V

1− βi
1

(8)

S =
S

1− βi
2

(9)

W = W − α
V√
S + ǫ

(10)

In our proposed work, DNN, as shown in Figure 4, is trained and tested
using the preprocessed IIoT dataset. The hyperparameters obtained from the
optimization algorithm were used for training the DNN.

4.2.3 Classwise Accuracy Measure

The module assesses the performance of the DNN by examining the accuracy
and precision of each IIoT attack. An attack is considered easy-to-detect if
it has both high accuracy and high precision, otherwise, it is labeled as a
challenging attack.

4.3 Level-2 Detection

The goal of the second-level detection is to detect the challenging IIoT attacks
that were misclassified at the first level detection. As hybrid models can
enhance detection accuracy [39], Two models, DNN (trained using enhanced
dragonfly algorithm) and NSA, are employed in the second level detection to
identify challenging attacks.

4.3.1 Deep Neural Networks (Trained Using Enhanced
Dragonfly Algorithm)

The same DNN architecture as in the first level is used. Softmax classifier is
used as an activation function. DNN is trained using the Enhanced Dragonfly
algorithm. Backpropagation is susceptible to noisy input and learning rate, and
it has an issue with local optima. We use the dragonfly algorithm to determine

Springer Nature 2021 LATEX template

12 Article Title

ideal weights and biases for DNN. The dragonfly algorithm is a Swarm-based
metaheuristics technique that is used to identify the best solutions to problems.

The algorithm is motivated by dragonflies’ quest for food sources while
fleeing from predators. A food source is the best solution, in terms of fitness,
from an algorithmic standpoint, whereas an enemy source is the worst choice
so far. The algorithm considers 5 elements namely separation (S), cohesion
(C), alignment (A), food source (F) (i.e., best solution), and enemy (E) (i.e.,
worst solution). Also, each element is associated with the coefficients namely
s, a, c, f, and e. The values of S, C, A, F, and E are computed as follows.

Si = −
∑

(X −Xj) (11)

Ai = ((
∑

Vj)/n) (12)

Ci = ((
∑

Xj/n)−X) (13)

Fi = X+ −X (14)

Ei = X− −X (15)

△Xt = (sSi + aAi + cCi + fFi + eEi) + wXt (16)

Xt+1 = Xt + levy(d) ∗ △Xt (17)

The population and the number of iterations are both initialized, and each
individual represents a vector of weights and bias values. At each iteration,
the fitness of an individual is calculated using the fitness function. The fitness
function for Neural Networks (NN) can be one of the performance metrics
used to evaluate NN. In our work, we’ve used accuracy as the fitness function.
Among all the individuals, the one with the highest fitness is taken as the best
solution and it is assigned as the food source. The individual with the least
fitness is taken as the worst solution and marked as the enemy source. The
weights w, s, a, c, f, and e are assigned. For each individual, if there exists at
least one neighbor the values of S, A, C, F, and E are calculated using the
equations (11) – (15). The weights bias value is updated using equation (16) if
there is a neighbor. If there is no neighbor to an individual, then the solution
is updated using equation (17). The Levy flight is calculated using (18). Here
b and r1 are constant values.

levy(x) =
0.01X(r1 ∗ σ)

|r1|
1

b

(18)

The drawback of this algorithm is as follows [40]

1. The lack of internal memory in this algorithm is a disadvantage since it
might lead to premature convergence to the local optimum.

Springer Nature 2021 LATEX template

Article Title 13

2. Levy flight mechanism is utilized to model the random flying behavior of
dragonflies in nature. The disadvantages of Levy flight are overflowing of
the search area and interruption of random flights due to its big searching
steps.

The aforementioned flaws are addressed in our enhanced dragonfly algo-
rithm. The changes are made on the use of the Levy flight and the introduction
of the concepts of local best and global best solutions. Algorithm 1 describes
the algorithm. For the neighbors in a cluster, the local best solution is used as
a food source. The reason for selecting the local best is that the global best
solution found thus far may lead to a local minimum in subsequent iterations,
narrowing the search space. At each cycle, a local best solution can be used to
overcome this. When a dragonfly has no neighbors, the global best and worst
solution will be used.

Algorithm 1 Enhanced Dragonfly Algorithm

Input Challenging attack: dataset
Output Optimal Weight: Xo

Data X (population), no gen (iterations), c (cohesion), s (seperation), a
(alignment), f (friend), e (enemy)

1: Initialize X,no gen i = 1
2: while i ≤ no gen do
3: for each x ∈ Xt do
4: if no of neighbors(x)! = 0 then
5: lbest, lworst = get local extreme(x, localbest, localworst)
6: Update w,s,a,c,f,e using equation
7: Calculate Si, Ai, Ci using equation (1)-(3)
8: Fi = lbest − x
9: Ei = lworst − x

10: △x = (sSi + aAi + cCi + fFi + eEi) + wx
11: x = x+△x
12: else
13: x = x+ w ∗|gbest − x|
14: end if
15: end for
16: end while

4.3.2 Negative Selection Algorithm (NSA)

The negative Selection algorithm [41, 42] is a kind of Artificial Immune System
(AIS).AIS, a type of rule-based machine learning system [43, 44] and it is
inspired by the human immune system. It works similarly to a pattern-based
selection. There are two phases namely

1. Training phase

Springer Nature 2021 LATEX template

14 Article Title

2. Testing phase

Each IIoT traffic of the dataset will be taken and compared to the current
detectors using similarity scores throughout the training phase. We’ll add the
instance as a detector if it belongs to a new pattern or doesn’t have any
similarities to current detectors. Incoming IIoT traffic will be considered during
the testing period. The similarity scores will be used to compare the incoming
test traffic to the detectors. The similarity scores will be used to compare the
incoming test traffic to the detectors.

Since the size of the IIoT dataset is large, checking each data point and
then selecting it as a detector would be difficult. Hence, in our proposed algo-
rithm, each IIoT attack in the dataset is clustered. The detectors will then be
generated by taking random samples from each cluster. The average similar-
ity score between each challenging IIoT attack and the test data is calculated
and stored. The probability is determined by dividing the average score of
each attack by the overall score. At the end of the test phase, we’ll acquire
the probability of test data belonging to each IIoT attack. The training and
testing phase of NSA is presented in Algorithm 2 and Algorithm 3.

Algorithm 2 Negative Selection Algorithm: Training Phase

Input dataset: Challenging attack
Output Set of detectors: detector

1: Initialize detector = []
2: for each class ∈ Challenging attack do

cluster class = Clustering(class)
3: for each cluster ∈ cluster class do

data point = Take random points from cluster
detector.add(data point)

4: end for
5: end for
6: return detector

4.3.3 Dempster Shafer’s Combination rule

The Dempster-Shafer theory is a probabilistic combination strategy that has
been used to combine the output from classifiers [45]. The output that we get
from the DNN will be the probability of test data belonging to a particular IIoT
attack. The output that we get from NSA will be also based on the probability
that a data point belongs to a particular class. So, Dempster Shafer’s theory
will be used to combine the two. The following equation (19) presents the
combination rule:

Springer Nature 2021 LATEX template

Article Title 15

Algorithm 3 Negative Selection Algorithm: Testing Phase

Input Testing data instance: test point
Output Probability of test instance belonging to each attack: result
Data detector

1: Initialize i = 0, score = 0
2: Initialize result = []
3:

4: for each attack ∈ Challenging attack do
s = getSimilarity(test data, detector[attack])
score = score+ s
result[attack] = s

5: end for
6: for each attack ∈ Challenging attack do

result[attack] = result[attack]/score
7: end for
8: return result

m1,2(A) =
1

K − 1

∑

B∩C

m1(B)m2(C) (19)

where m1(B) is the probability obtained from deep neural networks and
m2(C) is the probability obtained from novel Negative selection algorithm. K
is a measure of the amount of conflict between the two mass sets.

K =
∑

B∩C=φ

m1(B)m2(C) (20)

5 Experimental Setup

The proposed work is implemenented using Python. For implementation,
Google colab is being used. Our proposed model is evaluated using benchmark
datasets such as CICIDS-2017, CICIDS-2018, and Ton IoT datasets. Accuracy,
precision, recall, and F1-score are the performance measures that are used to
evaluate DL-TL-NIDS. The aforementioned measures are computed from the
confusion matrix. The following four terms make up the confusion matrix:

1. True Positive (TP): It is the number of test samples that is predicted
positive and it’s actually a positive sample

2. True Negative (TN): It is the number of samples that is predicted negative
and it’s actually a negative sample.

3. False Positive (FP): It is the number of samples that is predicted positive
and it’s actually a negative sample.

4. False Negative (FN): It is the number of samples that is predicted negative
and it’s actually a positive sample.

Springer Nature 2021 LATEX template

16 Article Title

With the help of these terms, the performance metrics can be calculated.
The calculation method for each performance metrics is described and the
formula is given through equation (21)-(24).

1. Accuracy: This metric takes into consideration the number of samples
correctly predicted. It is the ratio of the correct predictions to all the
predictions made by the model.

Accuracy =
TP + TN

TP + FP + TN + FN
(21)

2. Precision: It is the ratio of correct positive predictions made to the actual
number of positive samples in the dataset.

Precision =
TP

TP + FP
(22)

3. Recall: It is the ratio of correct positive predictions made by the model to
the total positive predictions made by the model.

Recall =
TP

TP + FN
(23)

4. F1-score: F1-score is the harmonic mean of recall and precision.

F1− score =
2 ∗ Precision ∗Recall

Precision+Recall
(24)

The performance of our proposed model across different datasets is eval-
uated and compared against the existing state-of-art models. In both the
levels, DNN opts for the optimized hyperparameters using Random Search, a
hyperparameter optimization method. Table 1 summarises the default hyper-
parameter values utilized across all datasets. Learning rate, batch size, epoch
size, and kernel initializer were the hyperparameters that were tuned via Ran-
dom Search. Table 2 shows the results of the Random Search executed for each
of the datasets mentioned above.

Table 1: Hyperparameter values

Hyperparameter Value
Activation function for hidden layers ReLU
Activation function for output layer Softmax
Loss Categorical-cross-category

5.1 CICIDS2017

CICIDS 2017 dataset was generated in 2017 by the Canadian Institute of Cyber
Security (CIC) and the University of New Brunswick. The dataset composes

Springer Nature 2021 LATEX template

Article Title 17

Table 2: Results of Random Search

Dataset Learning rate Epochs Batch size Kernel initializer
CICIDS 2017 0.01 70 100 uniform
CICIDS 2018 0.001 60 150 uniform
TON IoT 0.001 40 110 normal

of DoS, Bruteforce, PortScan, Web attack, and Infiltration attacks. It has 15
classes and 83 features. The upside of this dataset is that it has recorded up-
to-date attacks, and the drawback is that it has profoundly imbalanced classes
ranging from SQL Injection (0.0007%) to benign (80.30%).

Table 3 represents the performance of our proposed DL-TL-NIDS with the
CICIDS-2017 dataset. The attacks that were highly misclassified (had accu-
racy/precision below 90%) in the first level detection were Benign, Bot and
Portscan. The overall accuracy, precision, recall and F1-score is given in Table
4. The challenging attacks were fed for advanced detection. The false alarm
rate (flagging Benign as an attack) was around 5% in the first level detection,
and it has come down to 1% in second level detection.

Table 3: Performance of DL-TL-NIDS using CICIDS-2017 (Attack-wise)

Class Accuracy (in %) Precision (in %) Recall (in %) F1-Score (in %)
Benign 99.50 99.00 99.00 99.00
Bot 99.80 99.90 99.80 99.80
DDoS 99.86 100.00 100.00 100.00
DoS Goldeneye 100.00 100.00 100.00 100.00
DoS Hulk 99.99 99.00 99.00 100.00
DoS Slowhttptest 99.99 100.00 100.00 100.00
DoS Sloworis 99.90 99.00 100.00 100.00
FTP patator 99.83 100.00 100.00 100.00
Heartbleed 100.00 100.00 100.00 100.00
Infiltration 100.00 99.00 100.00 100.00
Portscan 99.70 99.59 99.50 99.54
SSH-patator 100.00 100.00 100.00 100.00
Web Bruteforce 100.00 100.00 100.00 100.00
Web attack SQL injection 100.00 100.00 100.00 100.00
Web attack XSS 100.00 100.00 100.00 100.00

Table 4: Overall Performance of DR-TL-IDS with CICIDS-2017

Class Proposed DL-TL-NIDS
Accuracy (in %) 99.86
Precision (in %) 99.69
F1-score (in %) 99.88
Recall (in %) 99.82

In [46], DNNs were used for their study, changing the number of hidden
layers from 1 to 5 and it’s been referred here for comparison with DL-TL-NIDS.

Springer Nature 2021 LATEX template

18 Article Title

For each attack, the best accuracy obtained by the existing work is taken, and
we have compared it with our results. It can be inferred from Table 5 that
our model performs well. The False Positive Rate (FPR) has been reduced in
DL-TL-NIDS when compared with [46].

Table 5: Performance of DL-TL-NIDS with CICIDS-2018 dataset

Accuracy (in %)

Class DL-TL-NIDS DNN [46]
Benign 99.50 55.90
Web 100.00 98.50
FTP Patator 99.83 92.80
SSH-patator 100.00 95.90
DDoS 99.94 85.40
PortScan 99.70 84.00
Bot 99.80 98.20

5.2 CICIDS-2018

CSE-CIC-IDS 2018 dataset was generated in 2018 by the CIC and Communi-
cation Security Establishment. It’s one of the most recent datasets produced
by CIC. There are 15 classes and 83 features in the dataset. The major attacks
generated were DoS, DDoS, SQL Injection, and Bruteforce.

The results are tabulated in Table 5. In the First level or simple detection,
six attacks, namely, Benign, XSS, SQL Injection, DoS-SlowHTTPTest, Infil-
tration, and FTP-Bruteforce attacks had accuracy/precision less than 90%.
The aforementioned attacks were marked as challenging attacks and fed for
Level-2 detection. Table 7 presents the comparison, in terms of accuracy, of
an existing state-of-art method [47] that employed ensemble learning along
with feature selection. It can be inferred from Table 8 that the percentage of
misclassification in our proposed method is far less than the ensemble method.

When compared against [48], which implemented CNN, DL-TL-NIDS
performed well, especially the detection was better for Infiltration, FTP Brute-
force, and DoS attacks. Figures 5 to Figure 12 present comparisons between
the [48] and DL-NL-TIDS in terms of accuracy, recall, precision, and F1-score.

5.3 TON IoT

The dataset was generated by UNSW Sydney, especially for attack detection
in IIoT. The dataset is generated by collecting information from sensors in
IoT devices such as Garage, GPS-tracker, Fridge, and Thermostat. It com-
prises Backdoor, Command Injection, XSS, Scanning, DDoS, and Ransomware
attacks.

Our proposed DL-TL-NIDS is compared against Kumar et.al [49], which
presents Ensemble-Anomaly based detection. It can be inferred from Table

Springer Nature 2021 LATEX template

Article Title 19

Table 6: Performance of DL-TL-NIDS with CICIDS-2018 dataset

Class Accuracy (in %) Precision (in %) Recall (in %) F1-Score (in %)
Benign 97.58 89.77 96.50 93.51
XSS 99.15 96.38 98.60 97.75
FTP 99.85 99.11 100.00 99.48
SQL 99.52 98.60 98.50 99.06
SlowHTTP 100.00 100.00 100.00 100.00
Infiltration 97.30 94.29 89.19 95.77
Bot 100.00 100.00 100.00 100.00
Web BruteForce 98.60 100.00 99.00 99.00
DDoS attack and HOIC 100.00 100.00 100.00 100.00
DDoS attack LOIC-UDP 100.00 100.00 100.00 100.00
DoS attack Goldeneye 100.00 100.00 100.00 100.00
DoS attack Hulk 100.00 100.00 100.00 100.00
DoS Slowworis 100.00 100.00 100.00 100.00
SSH Bruteforce 100.00 100.00 100.00 100.00
DDoS attack LOIC-HTTP 100.00 100.00 100.00 100.00

Table 7: Comparison of DL-TL-NIDS and [47] in terms of accuracy

Performance Metrics DL-TL-NIDS Ensemble (with feature selection)
Accuracy (in %) 99.97 98.80
Precision (in %) 99.76 98.80
Recall (in %) 99.74 97.10
F1-Score (in %) 99.75 97.90

Table 8: Misclassification comparision in [47] and proposed method

Class Misclassification in CNN [47] Misclassification in the proposed DL-TL-NIDS
Accuracy (in %) 99.97 98.80
Precision (in %) 99.76 98.80
Recall (in %) 99.74 97.10
F1-Score (in %) 99.75 97.90

Table 9: Performance Comparison of Proposed DL-TL-NIDS with [49]

Class Proposed DL-TL-NIDS Ensemble-Anomaly based IDS[49]
Accuracy (in %) 99.97 96.35
Precision (in %) 95.62 90.54
F1-score (in %) 99.65 95.03
False Alarm Rate (in %) 2.34 5.59

9 that the false alarm rate is reduced in our proposed model. Also, other
performance metrics like accuracy and precision have been improved.

Springer Nature 2021 LATEX template

20 Article Title

Fig. 5: Accuracy comparison of CNN [48] vs DL-TL-IDS

Fig. 6: Accuracy comparison of CNN [48] vs DL-TL-IDS

Springer Nature 2021 LATEX template

Article Title 21

Fig. 7: Precision comparison of CNN [48] vs DL-TL-IDS

Fig. 8: Precision comparison of CNN [48] vs DL-TL-IDS

Springer Nature 2021 LATEX template

22 Article Title

Fig. 9: Recall comparison of CNN [48] vs DL-TL-IDS

Fig. 10: Recall comparison of CNN [48] vs DL-TL-IDS

Springer Nature 2021 LATEX template

Article Title 23

Fig. 11: F1-score comparison of CNN [48] vs DL-TL-IDS

Fig. 12: F1-score comparison of CNN [48] vs DL-TL-IDS

Springer Nature 2021 LATEX template

24 Article Title

6 Conclusion and Future Work

The Industrial Internet of Things (IIoT) provides a number of benefits. This
study explored various applications, security issues induced by IIoT, and
presented a Deep Learning-based two-level Intrusion Detection System. The
proposed model first segregates challenging attacks in the first-level detection
and performs Advanced detection in the second-level. The model is evaluated
using benchmark and IoT and network datasets. It is demonstrated that it
performed better than the existing state-of-the-art models.

In the future, the proposed two-level IDS can be extended to perform well
on zero-day attacks or new attacks. Also, the proposed work can be extended to
fit other IoT specific environments like the Internet of Medical Things (IoMT)
and Machine-to-Machine (M2M), etc, to protect the devices and data.

Springer Nature 2021 LATEX template

Article Title 25

Declarations

• Funding: The work is carried out without any financial support
• Conflict of interest/Competing interests: We declare that there is no conflict
of interest

• Ethics approval: We declare that the work presented here is original and it
is submitted nowhere.

• Consent to participate: Not Applicable
• Consent for publication: Not Applicable
• Availability of data and materials: Not Applicable
• Code availability: Not Applicable
• Authors’ contributions

Role Contributed Authors

Conceptualization Kathiroli Raja, Krithika Karthikeyan, Abilash B

Methodology Kathiroli Raja, Krithika Karthikeyan, Abilash B

Project Administration Gunasekaran Raja, Kapal Dev

Software (Implementation) Kathiroli Raja, Krithika Karthikeyan, Abilash B

Supervision Gunasekaran Raja, Kapal Dev

Validation Gunasekaran Raja, Kapal Dev

Visualization Kathiroli Raja, Krithika Karthikeyan, Abilash B

Writing-Original Draft Kathiroli Raja, Krithika Karthikeyan

Writing - Review & Editing Gunasekaran Raja, Kapal Dev

Springer Nature 2021 LATEX template

26 Article Title

References

[1] Pietraszek, T., Tanner, A.: Data mining and machine learning—towards
reducing false positives in intrusion detection. Information Security Tech-
nical Report 10(3), 169–183 (2005). https://doi.org/10.1016/j.istr.2005.
07.001

[2] Khraisat Ansam, V.P. Gondal Iqbal, Joarder, K.: Survey of intrusion
detection systems: techniques, datasets and challenges. Cybersecurity 2
(2019). https://doi.org/10.1186/s42400-019-0038-7

[3] Meng, Yu-Xin: The practice on using machine learning for network
anomaly intrusion detection. In: 2011 International Conference on
Machine Learning and Cybernetics, vol. 2, pp. 576–581 (2011). https:
//doi.org/10.1109/ICMLC.2011.6016798

[4] Abirami, M.S., Yash, U., Singh, S.: Building an ensemble learning based
algorithm for improving intrusion detection system. In: Dash, S.S., Lak-
shmi, C., Das, S., Panigrahi, B.K. (eds.) Artificial Intelligence and
Evolutionary Computations in Engineering Systems, pp. 635–649 (2020).
https://doi.org/10.1007/978-981-15-0199-9 55

[5] Ran, J., Ji, Y., Tang, B.: A semi-supervised learning approach to ieee
802.11 network anomaly detection. In: 2019 IEEE 89th Vehicular Tech-
nology Conference (VTC2019-Spring), pp. 1–5 (2019). https://doi.org/
10.1109/VTCSpring.2019.8746576

[6] Jianliang, M., Haikun, S., Ling, B.: The application on intrusion detec-
tion based on k-means cluster algorithm. In: 2009 International Forum
on Information Technology and Applications, vol. 1, pp. 150–152 (2009).
https://doi.org/10.1109/IFITA.2009.34

[7] Zaman, M., Lung, C.-H.: Evaluation of machine learning techniques for
network intrusion detection. In: NOMS 2018 - 2018 IEEE/IFIP Network
Operations and Management Symposium, pp. 1–5 (2018). https://doi.
org/10.1109/NOMS.2018.8406212

[8] Faker, O., Dogdu, E.: Intrusion detection using big data and deep learning
techniques. (2019). https://doi.org/10.1145/3299815.3314439

[9] Shone, N., Ngoc, T.N., Phai, V.D., Shi, Q.: A deep learning approach to
network intrusion detection. IEEE Transactions on Emerging Topics in
Computational Intelligence 2(1), 41–50 (2018). https://doi.org/10.1109/
TETCI.2017.2772792

[10] Sharafaldin, I., Habibi Lashkari, A., Ghorbani, A.: Toward generating a
new intrusion detection dataset and intrusion traffic characterization, pp.

https://doi.org/10.1016/j.istr.2005.07.001
https://doi.org/10.1016/j.istr.2005.07.001
https://doi.org/10.1186/s42400-019-0038-7
https://doi.org/10.1109/ICMLC.2011.6016798
https://doi.org/10.1109/ICMLC.2011.6016798
https://doi.org/10.1007/978-981-15-0199-9_55
https://doi.org/10.1109/VTCSpring.2019.8746576
https://doi.org/10.1109/VTCSpring.2019.8746576
https://doi.org/10.1109/IFITA.2009.34
https://doi.org/10.1109/NOMS.2018.8406212
https://doi.org/10.1109/NOMS.2018.8406212
https://doi.org/10.1145/3299815.3314439
https://doi.org/10.1109/TETCI.2017.2772792
https://doi.org/10.1109/TETCI.2017.2772792

Springer Nature 2021 LATEX template

Article Title 27

108–116 (2018). https://doi.org/10.5220/0006639801080116

[11] Moustafa, N.: A new distributed architecture for evaluating ai-based secu-
rity systems at the edge: Network ton iot datasets. Sustainable Cities and
Society 72, 102994 (2021). https://doi.org/10.1016/j.scs.2021.102994

[12] Booij, T.M., Chiscop, I., Meeuwissen, E., Moustafa, N., den Hartog,
F.T.H.: Ton iot: The role of heterogeneity and the need for standardiza-
tion of features and attack types in iot network intrusion datasets. IEEE
Internet of Things Journal, 1–1 (2021). https://doi.org/10.1109/JIOT.
2021.3085194

[13] Alsaedi, A., Moustafa, N., Tari, Z., Mahmood, A., Anwar, A.: Ton iot
telemetry dataset: A new generation dataset of iot and iiot for data-
driven intrusion detection systems. IEEE Access 8, 165130–165150 (2020).
https://doi.org/10.1109/ACCESS.2020.3022862

[14] Moustafa, N., Keshky, M., Debiez, E., Janicke, H.: Federated ton iot
windows datasets for evaluating ai-based security applications. In: 2020
IEEE 19th International Conference on Trust, Security and Privacy in
Computing and Communications (TrustCom), pp. 848–855 (2020). https:
//doi.org/10.1109/TrustCom50675.2020.00114

[15] Moustafa, N., Ahmed, M., Ahmed, S.: Data analytics-enabled intrusion
detection: Evaluations of ton iot linux datasets. In: 2020 IEEE 19th Inter-
national Conference on Trust, Security and Privacy in Computing and
Communications (TrustCom), pp. 727–735 (2020). https://doi.org/10.
1109/TrustCom50675.2020.00100

[16] Moustafa, N.: A Systemic IoT-Fog-Cloud Architecture for Big-Data
Analytics and Cyber Security Systems: A Review of Fog Computing
(2019)

[17] Moustafa, N.: New generations of internet of things datasets for cyber-
security applications based machine learning: Ton iot datasets. In: Pro-
ceedings of the eResearch Australasia Conference (2019)

[18] Iotbot-ids: A novel statistical learning-enabled botnet detection frame-
work for protecting networks of smart cities. Sustainable Cities and
Society 72, 103041 (2021). https://doi.org/10.1016/j.scs.2021.103041

[19] Abdel-Basset, M., Chang, V., Hawash, H., Chakrabortty, R.K., Ryan, M.:
Deep-ifs: Intrusion detection approach for iiot traffic in fog environment.
IEEE Transactions on Industrial Informatics, 1–1 (2020). https://doi.org/
10.1109/TII.2020.3025755

[20] Jayalaxmi, P., Saha, R., Kumar, G., Kumar, N., Kim, T.-H.: A taxonomy

https://doi.org/10.5220/0006639801080116
https://doi.org/10.1016/j.scs.2021.102994
https://doi.org/10.1109/JIOT.2021.3085194
https://doi.org/10.1109/JIOT.2021.3085194
https://doi.org/10.1109/ACCESS.2020.3022862
https://doi.org/10.1109/TrustCom50675.2020.00114
https://doi.org/10.1109/TrustCom50675.2020.00114
https://doi.org/10.1109/TrustCom50675.2020.00100
https://doi.org/10.1109/TrustCom50675.2020.00100
https://doi.org/10.1016/j.scs.2021.103041
https://doi.org/10.1109/TII.2020.3025755
https://doi.org/10.1109/TII.2020.3025755

Springer Nature 2021 LATEX template

28 Article Title

of security issues in industrial internet-of-things: Scoping review for exist-
ing solutions, future implications, and research challenges. IEEE Access
9, 25344–25359 (2021). https://doi.org/10.1109/ACCESS.2021.3057766

[21] Qureshi, K.N., Rana, S.S., Ahmed, A., Jeon, G.: A novel and secure
attacks detection framework for smart cities industrial internet of things.
Sustainable Cities and Society 61, 102343 (2020). https://doi.org/10.
1016/j.scs.2020.102343

[22] Zolanvari, M., Teixeira, M.A., Jain, R.: Effect of imbalanced datasets on
security of industrial iot using machine learning. In: 2018 IEEE Inter-
national Conference on Intelligence and Security Informatics (ISI), pp.
112–117 (2018). https://doi.org/10.1109/ISI.2018.8587389

[23] Zhou, X., Hu, Y., Liang, W., Ma, J., Jin, Q.: Variational lstm enhanced
anomaly detection for industrial big data. IEEE Transactions on Indus-
trial Informatics 17(5), 3469–3477 (2021). https://doi.org/10.1109/TII.
2020.3022432

[24] Popoola, S.I., Adebisi, B., Ande, R., Hammoudeh, M., Anoh, K., Atayero,
A.A.: Smote-drnn: A deep learning algorithm for botnet detection in
the internet-of-things networks. Sensors 21(9) (2021). https://doi.org/10.
3390/s21092985

[25] Qiu, T., Chi, J., Zhou, X., Ning, Z., Atiquzzaman, M., Wu, D.O.: Edge
computing in industrial internet of things: Architecture, advances and
challenges. IEEE Communications Surveys Tutorials 22(4), 2462–2488
(2020). https://doi.org/10.1109/COMST.2020.3009103

[26] Aboelwafa, M.M.N., Seddik, K.G., Eldefrawy, M.H., Gadallah, Y., Gid-
lund, M.: A machine-learning-based technique for false data injection
attacks detection in industrial iot. IEEE Internet of Things Journal 7(9),
8462–8471 (2020). https://doi.org/10.1109/JIOT.2020.2991693

[27] Zolanvari, M., Teixeira, M.A., Gupta, L., Khan, K.M., Jain, R.: Machine
learning-based network vulnerability analysis of industrial internet of
things. IEEE Internet of Things Journal 6(4), 6822–6834 (2019). https:
//doi.org/10.1109/JIOT.2019.2912022

[28] Li, X., Xu, M., Vijayakumar, P., Kumar, N., Liu, X.: Detection of low-
frequency and multi-stage attacks in industrial internet of things. IEEE
Transactions on Vehicular Technology 69(8), 8820–8831 (2020). https:
//doi.org/10.1109/TVT.2020.2995133

[29] Khoda, M.E., Imam, T., Kamruzzaman, J., Gondal, I., Rahman, A.:
Robust malware defense in industrial iot applications using machine

https://doi.org/10.1109/ACCESS.2021.3057766
https://doi.org/10.1016/j.scs.2020.102343
https://doi.org/10.1016/j.scs.2020.102343
https://doi.org/10.1109/ISI.2018.8587389
https://doi.org/10.1109/TII.2020.3022432
https://doi.org/10.1109/TII.2020.3022432
https://doi.org/10.3390/s21092985
https://doi.org/10.3390/s21092985
https://doi.org/10.1109/COMST.2020.3009103
https://doi.org/10.1109/JIOT.2020.2991693
https://doi.org/10.1109/JIOT.2019.2912022
https://doi.org/10.1109/JIOT.2019.2912022
https://doi.org/10.1109/TVT.2020.2995133
https://doi.org/10.1109/TVT.2020.2995133

Springer Nature 2021 LATEX template

Article Title 29

learning with selective adversarial samples. IEEE Transactions on Indus-
try Applications 56(4), 4415–4424 (2020). https://doi.org/10.1109/TIA.
2019.2958530

[30] Yan, X., Xu, Y., Xing, X., Cui, B., Guo, Z., Guo, T.: Trustworthy network
anomaly detection based on an adaptive learning rate and momentum
in iiot. IEEE Transactions on Industrial Informatics 16(9), 6182–6192
(2020). https://doi.org/10.1109/TII.2020.2975227

[31] Bhunia, S.S., Gurusamy, M.: Dynamic attack detection and mitigation in
iot using sdn. In: 2017 27th International Telecommunication Networks
and Applications Conference (ITNAC), pp. 1–6 (2017). https://doi.org/
10.1109/ATNAC.2017.8215418

[32] Latif, S., Idrees, Z., Zou, Z., Ahmad, J.: Drann: A deep random neural
network model for intrusion detection in industrial iot. In: 2020 Interna-
tional Conference on UK-China Emerging Technologies (UCET), pp. 1–4
(2020). https://doi.org/10.1109/UCET51115.2020.9205361

[33] Yao, H., Fu, D., Zhang, P., Li, M., Liu, Y.: Msml: A novel multilevel semi-
supervised machine learning framework for intrusion detection system.
IEEE Internet of Things Journal 6(2), 1949–1959 (2019). https://doi.org/
10.1109/JIOT.2018.2873125

[34] Liang, W., Li, K.-C., Long, J., Kui, X., Zomaya, A.Y.: An industrial net-
work intrusion detection algorithm based on multifeature data clustering
optimization model. IEEE Transactions on Industrial Informatics 16(3),
2063–2071 (2020). https://doi.org/10.1109/TII.2019.2946791

[35] Yan, Q., Huang, W., Luo, X., Gong, Q., Yu, F.R.: A multi-level ddos
mitigation framework for the industrial internet of things. IEEE Com-
munications Magazine 56(2), 30–36 (2018). https://doi.org/10.1109/
MCOM.2018.1700621

[36] Mighan Soosan Naderi, K.M.: A novel scalable intrusion detection system
based on deep learning. International Journal of Information Security,
387–403 (2021). https://doi.org/10.1007/s10207-020-00508-5

[37] Maharani, M.P., Tobianto Daely, P., Lee, J.M., Kim, D.-S.: Attack detec-
tion in fog layer for iiot based on machine learning approach. In: 2020
International Conference on Information and Communication Technol-
ogy Convergence (ICTC), pp. 1880–1882 (2020). https://doi.org/10.1109/
ICTC49870.2020.9289380

[38] Zhong, W., Yu, N., Ai, C.: Applying big data based deep learning sys-
tem to intrusion detection. Big Data Mining and Analytics 3(3), 181–195
(2020). https://doi.org/10.26599/BDMA.2020.9020003

https://doi.org/10.1109/TIA.2019.2958530
https://doi.org/10.1109/TIA.2019.2958530
https://doi.org/10.1109/TII.2020.2975227
https://doi.org/10.1109/ATNAC.2017.8215418
https://doi.org/10.1109/ATNAC.2017.8215418
https://doi.org/10.1109/UCET51115.2020.9205361
https://doi.org/10.1109/JIOT.2018.2873125
https://doi.org/10.1109/JIOT.2018.2873125
https://doi.org/10.1109/TII.2019.2946791
https://doi.org/10.1109/MCOM.2018.1700621
https://doi.org/10.1109/MCOM.2018.1700621
https://doi.org/10.1007/s10207-020-00508-5
https://doi.org/10.1109/ICTC49870.2020.9289380
https://doi.org/10.1109/ICTC49870.2020.9289380
https://doi.org/10.26599/BDMA.2020.9020003

Springer Nature 2021 LATEX template

30 Article Title

[39] Peddabachigari, S., Abraham, A., Grosan, C., Thomas, J.: Modeling
intrusion detection system using hybrid intelligent systems. Journal of
Network and Computer Applications 30(1), 114–132 (2007). https://doi.
org/10.1016/j.jnca.2005.06.003

[40] Peddabachigari, S., Abraham, A., Grosan, C., Thomas, J.: Dragonfly
algorithm and its applications in applied science survey. Computa-
tional Intelligence and Neuroscience (2019). https://doi.org/10.1155/
2019/9293617

[41] Igawa, K., Ohashi, H.: A negative selection algorithm for classification and
reduction of the noise effect. Applied Soft Computing, 431–438 (2009).
https://doi.org/10.1016/j.asoc.2008.05.003

[42] Gong, M., Zhang, J., Ma, J., Jiao, L.: An efficient negative selection
algorithm with further training for anomaly detection. Knowledge-Based
Systems, 185–191 (2012). https://doi.org/10.1016/j.knosys.2012.01.004

[43] Dutt, I., Borah, S., Maitra, I.K.: Immune system based intrusion detection
system (is-ids): A proposed model. IEEE Access 8, 34929–34941 (2020).
https://doi.org/10.1109/ACCESS.2020.2973608

[44] Ou, C.-M.: Host-based intrusion detection systems adapted from agent-
based artificial immune systems. Neurocomputing, 78–86 (2012). https:
//doi.org/10.1016/j.neucom.2011.07.031

[45] Surathong, S., Auephanwiriyakul, S., Theera-Umpon, N.: Decision fusion
using fuzzy dempster-shafer theory. In: Recent Advances in Information
and Communication Technology 2018, pp. 115–125 (2019)

[46] Vinayakumar, R., Alazab, M., Soman, K.P., Poornachandran, P., Al-
Nemrat, A., Venkatraman, S.: Deep learning approach for intelligent
intrusion detection system. IEEE Access, 41525–41550 (2019). https:
//doi.org/10.1109/ACCESS.2019.2895334

[47] Fitni, Q.R.S., Ramli, K.: Implementation of ensemble learning and fea-
ture selection for performance improvements in anomaly-based intrusion
detection systems. In: 2020 IEEE International Conference on Industry
4.0, Artificial Intelligence, and Communications Technology (IAICT), pp.
118–124 (2020). https://doi.org/10.1109/IAICT50021.2020.9172014

[48] Kaur, G., Habibi Lashkari, A., Rahali, A.: Intrusion traffic detection
and characterization using deep image learning. In: 2020 IEEE Intl
Conf on Dependable, Autonomic and Secure Computing, Intl Conf on
Pervasive Intelligence and Computing, Intl Conf on Cloud and Big
Data Computing, Intl Conf on Cyber Science and Technology Congress
(DASC/PiCom/CBDCom/CyberSciTech), pp. 55–62 (2020). https://doi.

https://doi.org/10.1016/j.jnca.2005.06.003
https://doi.org/10.1016/j.jnca.2005.06.003
https://doi.org/10.1155/2019/9293617
https://doi.org/10.1155/2019/9293617
https://doi.org/10.1016/j.asoc.2008.05.003
https://doi.org/10.1016/j.knosys.2012.01.004
https://doi.org/10.1109/ACCESS.2020.2973608
https://doi.org/10.1016/j.neucom.2011.07.031
https://doi.org/10.1016/j.neucom.2011.07.031
https://doi.org/10.1109/ACCESS.2019.2895334
https://doi.org/10.1109/ACCESS.2019.2895334
https://doi.org/10.1109/IAICT50021.2020.9172014
https://doi.org/10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00025
https://doi.org/10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00025

Springer Nature 2021 LATEX template

Article Title 31

org/10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00025

[49] Kumar, P., Gupta, G.P., Tripathi, R.: An ensemble learning and fog-cloud
architecture-driven cyber-attack detection framework for iomt networks.
Computer Communications, 110–124 (2021). https://doi.org/10.1016/j.
comcom.2020.12.003

https://doi.org/10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00025
https://doi.org/10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00025
https://doi.org/10.1016/j.comcom.2020.12.003
https://doi.org/10.1016/j.comcom.2020.12.003

	Introduction
	Motivation
	Literature Survey
	Proposed Methodology
	Oversampling and Standardization
	Level-1 Detection
	Hyperparameter Optimization
	Deep Neural Networks
	Classwise Accuracy Measure

	Level-2 Detection
	Deep Neural Networks (Trained Using Enhanced Dragonfly Algorithm)
	Negative Selection Algorithm (NSA)
	Dempster Shafer's Combination rule

	Experimental Setup
	CICIDS2017
	CICIDS-2018
	TON_IoT

	Conclusion and Future Work

