Ultra-thin dicing blade is usually used to achieve a high precision cutting in semiconductor back-end packaging and assembly. Lots of interactional parameters involving in dicing blade preparation and cutting process bring difficulties to high cutting qualities and good working life of dicing blade. In order to address these problems, this study prepared three kinds of dicing blades and characterized the cutting properties of three dicing blades. It first proposed the abrasive exposure coefficient and tool deviation coefficient to provide parameters for the cutting force model. Then the experimental apparatus was set up to verify the proposed cutting force model. And a series of parameters including feed rate, spindle current, edge chipping coefficient, tool wear amount and grinding performance are used to characterize the comprehensive performance of prepared dicing blades. Finally, the edge morphology was observed under 3D microscope to analysis the hardness of different dicing blades. The theoretical and experimental results indicate that the proposed cutting force model can reflect actual cutting process. There is an inverse proportional function between the shedding of abrasive particles and the hardness of the matrix. The cutting performance of dicing blades is very dependent on the material of workpiece. C-dicing blades presents outstanding comprehensive effects with small chips and good self-sharpening properties.