1.
Mishra S, Kumari V. A Review on Male Sterility-Concepts and Utilization in Vegetable
Crops. International Journal of Current Microbiology and Applied Sciences. 2018;7(2):3016-34.
2.
Toppino L, Kooiker M, Lindner M, Dreni L, Rotino GL, Kater MM. Reversible male sterility
in eggplant (Solanum melongena L.) by artificial microRNA-mediated silencing of general transcription factor genes.
Plant Biotechnol J. 2011;9(6):684-92.
3.
Haddad IVN, Ribeiro de Santiago-Fernandes LD, Machado SR. Autophagy is associated
with male sterility in pistillate flowers of Maytenus obtusifolia (Celastraceae). Australian Journal of Botany. 2018;66(2):108.
4.
Wan X, Wu S, Li Z, Dong Z, An X, Ma B, Tian Y, Li J. Maize Genic Male-Sterility Genes
and Their Applications in Hybrid Breeding: Progress and Perspectives. Mol Plant. 2019;12(3):321-42.
5.
Singh SP, Srivastava R, Kumar J. Male sterility systems in wheat and opportunities
for hybrid wheat development. Acta Physiologiae Plantarum. 2014;37(1):1713.
6.
Tang H, Xie Y, Liu YG, Chen L. Advances in understanding the molecular mechanisms
of cytoplasmic male sterility and restoration in rice. Plant Reprod. 2017;30(4):179-84.
7.
Engelke T, Hirsche J, Roitsch T. Anther-specific carbohydrate supply and restoration
of metabolically engineered male sterility. J Exp Bot. 2010;61(10):2693-706.
8.
Horn R, Gupta KJ, Colombo N. Mitochondrion role in molecular basis of cytoplasmic
male sterility. Mitochondrion. 2014;19:198-205.
9.
Hu J, Huang W, Huang Q, Qin X, Yu C, Wang L, Li S, Zhu R, Zhu Y. Mitochondria and
cytoplasmic male sterility in plants. Mitochondrion. 2014;19:282-8.
10.
Roth GA, Johnson C, Abajobir A, Abd-Allah F, Abera SF, Abyu G, et al. Global, Regional,
and National Burden of Cardiovascular Diseases for 10 Causes, 1990 to 2015. J Am Coll
Cardiol. 2017;70(1):1-25.
11.
Townsend N, Wilson L, Bhatnagar P, Wickramasinghe K, Rayner M, Nichols M. Cardiovascular
disease in Europe: epidemiological update 2016. European Heart Journal. 2016;37(42):3232-45.
12.
Xu H, Song J, Luo H, Zhang Y, Li Q, Zhu Y, et al. Analysis of the Genome Sequence
of the Medicinal Plant Salvia miltiorrhiza. Mol Plant. 2016;9(6):949-52.
13.
Pei T, Ma P, Ding K, Liu S, Jia Y, Ru M, Dong J, Liang Z. SmJAZ8 acts as a core repressor
regulating JA-induced biosynthesis of salvianolic acids and tanshinones in Salvia miltiorrhiza hairy roots. J Exp Bot. 2018;69(7):1663-78.
14.
Zhang G, Tian Y, Zhang J, Shu L, Yang S, Wang W, Sheng J, Dong Y, Chen W. Hybrid de
novo genome assembly of the Chinese herbal plant danshen (Salvia miltiorrhiza Bunge). Gigascience. 2015;4:62.
15.
Song J, Ji Y, Xu K, Wang Z. An integrated analysis of the rosmarinic acid-biosynthetic
genes to uncover the regulation of rosmarinic acid pathway in Salvia miltiorrhiza. Acta Physiologiae Plantarum. 2012;34(4):1501-11.
16.
Zhang Y, Guo L, Shu Z, Sun Y, Chen Y, Liang Z, Guo H. Identification of Amplified
Fragment Length Polymorphism (AFLP) Markers Tightly Associated with Drought Stress
Gene in Male Sterile and Fertile Salvia miltiorrhiza Bunge. Int J Mol Sci. 2013;14(3):6518-28.
17.
Matkowski A, Zielinska S, Oszmianski J, Lamer-Zarawska E. Antioxidant activity of
extracts from leaves and roots of Salvia miltiorrhiza Bunge, S. przewalskii Maxim., and S. verticillata L. Bioresour Technol. 2008;99(16):7892-6.
18.
Ali M, Abbasi BH, Ihsan ul h. Production of commercially important secondary metabolites
and antioxidant activity in cell suspension cultures of Artemisia absinthium L. Industrial Crops and Products. 2013;49:400-06.
19.
Cortleven A, Schmulling T. Regulation of chloroplast development and function by cytokinin.
J Exp Bot. 2015;66(16):4999-5013.
20.
Lv Y, Shao G, Qiu J, Jiao G, Sheng Z, Xie L, et al. White Leaf and Panicle 2, encoding
a PEP-associated protein, is required for chloroplast biogenesis under heat stress
in rice. J Exp Bot. 2017;68(18):5147-60.
21.
Gago J, Daloso Dde M, Figueroa CM, Flexas J, Fernie AR, Nikoloski Z. Relationships
of Leaf Net Photosynthesis, Stomatal Conductance, and Mesophyll Conductance to Primary
Metabolism: A Multispecies Meta-Analysis Approach. Plant Physiol. 2016;171(1):265-79.
22.
Athar HuR, Zafar ZU, Ashraf M. Glycinebetaine Improved Photosynthesis in Canola under
Salt Stress: Evaluation of Chlorophyll Fluorescence Parameters as Potential Indicators.
Journal of Agronomy and Crop Science. 2015;201(6):428-42.
23.
Chandran AKN, Lee GS, Yoo YH, Yoon UH, Ahn BO, Yun DW, et al. Functional classification
of rice flanking sequence tagged genes using MapMan terms and global understanding
on metabolic and regulatory pathways affected by dxr mutants having defects in light
response. Rice (N Y). 2016;9(1):17.
24.
Goffard N, Weiller G. Extending MapMan: application to legume genome arrays. Bioinformatics.
2006;22(23):2958-9.
25.
Ruan YL. Signaling role of sucrose metabolism in development. Mol Plant. 2012;5(4):763-5.
26.
Lutken H, Lloyd JR, Glaring MA, Baunsgaard L, Laursen KH, Haldrup A, Kossmann J, Blennow
A. Repression of both isoforms of disproportionating enzyme leads to higher malto-oligosaccharide
content and reduced growth in potato. Planta. 2010;232(5):1127-39.
27.
Hao C, Xia Z, Fan R, Tan L, Hu L, Wu B, Wu H. De novo transcriptome sequencing of
black pepper (Piper nigrum L.) and an analysis of genes involved in phenylpropanoid metabolism in response to
Phytophthora capsici. BMC Genomics. 2016;17(1):822.
28.
Zhang X, Liu CJ. Multifaceted regulations of gateway enzyme phenylalanine ammonia-lyase
in the biosynthesis of phenylpropanoids. Mol Plant. 2015;8(1):17-27.
29.
Panche AN, Diwan AD, Chandra SR. Flavonoids: an overview. J Nutr Sci. 2016;5:e47.
30.
George VC, Dellaire G, Rupasinghe HPV. Plant flavonoids in cancer chemoprevention:
role in genome stability. J Nutr Biochem. 2017;45:1-14.
31.
Kallscheuer N, Vogt M, Bott M, Marienhagen J. Functional expression of plant-derived
O-methyltransferase, flavanone 3-hydroxylase, and flavonol synthase in Corynebacterium
glutamicum for production of pterostilbene, kaempferol, and quercetin. J Biotechnol.
2017;258:190-96.
32.
Matsui K, Oshima Y, Mitsuda N, Sakamoto S, Nishiba Y, Walker AR, et al. Buckwheat
R2R3 MYB transcription factor FeMYBF1 regulates flavonol biosynthesis. Plant Sci.
2018;274:466-75.
33.
Nguyen NH, Kim JH, Kwon J, Jeong CY, Lee W, Lee D, Hong S-W, Lee H. Characterization
of Arabidopsis thaliana FLAVONOL SYNTHASE 1 (FLS1) -overexpression plants in response to abiotic stress.
Plant Physiology and Biochemistry. 2016;103:133-42.
34.
Nabavi SM, Samec D, Tomczyk M, Milella L, Russo D, Habtemariam S, et al. Flavonoid
biosynthetic pathways in plants: Versatile targets for metabolic engineering. Biotechnol
Adv. 2018, 10.1016/j.biotechadv.2018.11.005.
35.
Ainsworth EA, Gillespie KM. Estimation of total phenolic content and other oxidation
substrates in plant tissues using Folin-Ciocalteu reagent. Nat Protoc. 2007;2(4):875-7.
36.
Zilani MNH, Sultana NA, Bakshi MK, Shampa IJ, Sumi SJ, Islam O. Bioactivities of leaf
and root extract of Ceriscoids turgida (Roxb.). Oriental Pharmacy and Experimental Medicine. 2018;18(2):159-65.
37.
Liang ZS, Yang DF, Liang X, Zhang YJ, Liu Y, Liu FH. Roles of reactive oxygen species
in methyl jasmonate and nitric oxide-induced tanshinone production in Salvia miltiorrhiza hairy roots. Plant Cell Rep. 2012;31(5):873-83.
38.
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357-9.
39.
Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or
without a reference genome. BMC Bioinformatics. 2011;12:323.
40.
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for
RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.
41.
Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, et al. KEGG for linking
genomes to life and the environment. Nucleic Acids Res. 2008;36:480-4.
42.
Chen S, Bai Y, Zhang L, Han X. Comparing physiological responses of two dominant grass
species to nitrogen addition in Xilin River Basin of China. Environmental and Experimental
Botany. 2005;53(1):65-75.