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Abstract
Background : The bioconversion of phytosterols into high value-added steroidal intermediates, including
the 9 α -hydroxy-4-androstene-3,17-dione (9-OHAD) and 22-hydroxy-23,24-bisnorchol-4-ene-3-one (4-HBC),
is the cornerstone in steroid pharmaceutical industry . However , t he low transportation efficiency of
hydrophobic substrates into mycobacterial cells severely limits the transformation . In this study, a robust
and stable modification of the cell wall in M. neoaurum strain strikingly enhanced the cell permeability for
the high production of steroids.

Results: The deletion of the nonessential kasB , encoding a β-ketoacyl-acyl carrier protein synthase, led to
a disturbed proportion of mycolic acids (MAs), w hich is one of the most important components in the
cell wall of Mycobacterium neoaurum ATCC 25795. The determination of cell permeability displayed
about two times improvement in the kasB -deficient strain than that of the wild type M. neoaurum . Thus,
the deficiency of kasB in the 9-OHAD-producing strain resulted in a significant increase of 137.7% in the
yield of 9 α -hydroxy-4-androstene-3,17-dione (9-OHAD) . Ultimately, the 9-OHAD productivity in an
industrial used resting cell system was reached 0.1135 g/L/h (10.9 g/L 9-OHAD from 20 g/L phytosterol)
and the conversion time was shortened by 33%. In addition , a similar self-enhancement effect (34.5%)
was realized in the 22-hydroxy-23,24-bisnorchol-4-ene-3-one (4-HBC) producing strain.

Conclusions : The modification of kasB resulted in a meaningful change in the cell wall mycolic acids.
Deletion of the kasB gene remarkably improved the cell permeability, leading to a self-enhancement of the
steroidal intermediate conversion. The results showed a high efficiency and feasibility of this
construction strategy.

Background
Steroidal drugs are the second largest category in the pharmaceutical market. More than 400 kinds of
steroid drugs for a wide range of diseases are selling with an annual sale of 100 billion dollars [1].
Modifying the mycobacterial metabolic pathway for accumulating high value-added steroid
intermediates [2] is the most important step of the latest upgraded semi-synthetic route in steroidal
pharmaceutical industry [3]. By the conversion of low value-added phytosterols, environment friendly
extracts from the vegetable oil processing waste, sustainable pine tree bioresource and waste products in
papermaking [4], C19 steroids (androst-4-ene-3,17-dione, AD; boldenone, BD; 9α-hydroxy-androst-4-ene-
3,17-dione, 9-OHAD) [5, 6] and C22 steroids (22-hydroxy-23,24-bisnorchol-4-ene-3-one, 4-HBC) [7] can be
respectively accumulated. Then, almost all kinds of steroid drugs, including adrenocortical and
progestational hormones, can be produced by the combinational chemical modifications [8]. For instance,
9-OHAD is a core intermediate and has been used as a cost-effective precursor to synthesize C21
adrenocortical hormone drugs [8]. However, the unsatisfying yield and productivity of the currently used
strains has prompted researchers to intensively investigate more efficient and stable strategies for the
biosynthesis of important steroidal intermediates [9, 10].



Page 4/20

Sterols can be catabolized as the sole carbon and energy source for maintaining the balance of basic
physiological metabolism in mycobacteria [9]. The uptake of sterols in cells may be divided into two
distinguished stages: (I) the mass transfer stage of sterol molecules and particles to cell surface and (II)
the diffusion stage of sterols across the cell wall and membrane. Stage I is mainly depends on the direct
contact with the substrates dispersed in the extracellular environment. Early studies on material transfers
demonstrated that in the presence of hydroxypropyl-β-cyclodextrin [11], the use of biocompatible water-
immiscible organic phase [12] could largely improve the solubilization of sterol substrates in the
transformation system. As a result, the cells contacted with the sterols more efficiently. The substrate
transfer was enhanced and the conversion productivity was increased accordingly. In addition, the β-
cyclodextrin possibly improved the permeability due to the alteration of mycobacterial cell wall structure
[13]. Thus, with the addition of glycine and vancomycin, which were inhibitors to the synthesis of
mycobacterial cell wall, the cell permeability displayed a marked improvement [14]. However, these
strategies employing massive additives are seldom used in the industrial process because of the high
costs and low effects. It is noteworthy that most of the aforementioned methods possibly lead to some
defects of the cell wall. The mycobacteria cell wall contains extremely rich mycolic acids [15]. This
component accounts for 40%-60% of the cell dry weight and are probably responsible for the crucial cell
permeability characteristic [16, 17]. Rational modifications of the mycolic acid biosynthesis pathway
might be reasonable ways to alter the permeability performance of the steroidal conversion microbial cell
factories.

Mycolic acids are synthesized originally from acetyl-CoA and malonyl-CoA [18]. The C16-C18 and C24-
C26 α-alkyl chain is elongated based on Claisen condensation catalyzed by the fatty acid synthase I
(FAS-I). The resulting short chain is synthesized by β-ketoacyl-ACP synthases (FabH) to form β-ketoacyl-
ACP. Then, a long mero chain can be obtained by the repetitive reductive cycles due to the catalysis of
multienzyme fatty acid synthase II complex (FAS-II). Additional elongation cycles are subsequently
catalyzed by the two β-ketoacyl-ACP synthase KasA and KasB. After the mero-chain and α-chain are
coupled together by the acyl-AMP ligase FadD32 and the polyketide synthase Pks13 and then deoxidized
by the mycolate reductase CmrA, the mature mycolate (trehalose monomycolate, TMM) can be
synthetized in the mycobacterial cytoplasm. Next, the TMM is transported to the cell periplasm and
participates in the subsequent assembly of mycolic acid-related structures, including the polar TDM and
mycolic acid methyl esters in the core mycolyl-arabinogalactan-peptidoglycan (MAMEs-AG-PG) complex
of cell wall [17]. The FAS-I synthesis gene fas is required in M. smegmatis [19] and M. tuberculosis [20]
and the fatty acid synthase II (FASII) enzymes InhA [21], MabA [22], HadB [23], and KasA [24] are also
required. The inactivation of these indispensable genes could lead to the lysis of mycobacterial cells [21-
24]. The disruption of nonessential genes possibly caused some stable defects only in the cell wall. Thus,
the loss of the dispensable genes, such as hadA, hadC and kasB in the mero-mycolic acid synthesis
pathway, are worth investigation in the model steroid transformation cells (Fig. 1a) [16, 18].

The biotransformation process is a rate-limiting step in the microbes producing steroid intermediates. It
usually takes 120 to 144 h to realize a satisfactory conversion rate of the substrate to target steroid
intermediates in the microbes [5, 6, 25]. However, it only takes about 48 to 72 h in most of other
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prokaryotic microorganisms [26-28]. The long conversion time is primarily attributed to the low
permeability of sterol substrates into the cell wall [2]. Promoting the substrate to enter microbial cells by
modifying the cell wall may shorten the time required by the bioconversion process and improve the
integral production capacity of mycobacterial cells.

Increasing the sterol biotransformation efficiency in M. neoaurum through a systemic cell wall
engineering technique was rarely reported [2]. The disruption of the genes involved in mycolic acid
synthesis in mycobacterial cells was not directly assessed. In the study, the annotated nonessential
mycolic acid synthetic genes were inactivated individually. The modification which significantly altered
the sterol conversion was further investigated. The result revealed the roles of accessory genes in the
formation of mycolic acids and provided an alternative evolution strategy for the microbial
transformation of steroidal intermediates.

Methods
Strains, plasmids and primers

All strains used in this study are described below (Table 1). Escherichia coli DH5α (TIANGEN Biotech. Co.,
Ltd., Shanghai, China) was used for plasmid amplification. The wild type M. neoaurum ATCC 25795 (Mn)
was purchased from American Type Culture Collection (ATCC). The C19 steroidal intermediate 9-OHAD
producers MnΔkstD1 and MnΔkstD1ΔkstD2ΔkstD3 (WI) were constructed by Kang Yao [6]. The C22
steroidal intermediate 4-HBC-producing strain MnΔkshAΔhsd4AΔkstD1ΔkstD2ΔkstD3 (WIII) was
constructed by Li-Qin Xu [7]. Others were all derived from the above three M. neoaurum strains. Common
plasmids (Additional file 1: Table S1) and primers (Additional file 1: Table S2) were used for constructing
the mutants.

Media and culture conditions

Media and culture conditions were the same as the previously described conditions [2, 29]. E. coli DH5α
was inoculated at 37 °C in 5 mL of Luria-Bertani (LB) medium. Kanamycin (50 mg/L) or hygromycin (100
mg/L) was added to the culture medium as required. Mycobacterial strains were firstly cultivated in 5 mL
of LB until OD600 was between 1.2 and 1.8. Then, according to an inoculum volume ratio of 1:10 (v/v),
the cell suspension was inoculated into 30 mL of MYC/01 medium (20.0 g/L glycerol, 2.0 g/L citric acid,
2.0 g/L NH4NO3, 0.5 g/L K2HPO4, 0.5 g/L MgSO4·7H2O, and 0.05 g/L ammonium ferric citrate, pH 7.5) in
250-mL flasks to obtain the mycobacterial seed suspension (OD600 =1.2-1.8).

For phenotypic identification, according to an inoculum volume ratio of 1:10 (v/v), the cultivated cells
were then transferred into 30 mL of minimal medium (MM) (2.0 g/L NH4NO3, 0.5 g/L K2HPO4, 0.5 g/L
MgSO4·7H2O, and 0.05 g/L ammonium ferric citrate) with 1 g/L glycerol or 1 g/L cholesterol (purity >
95.0%, Adamas Reagent, Ltd., Shanghai, China). Cells were harvested by the centrifugation at 4,000 g for
10 min.
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For the bioconversion in growth cells, according to an inoculum volume ratio of 1:10 (v/v), the cultivated
seed cells were inoculated into 30 mL of MYC/02 medium (10.0 g/L glucose, 2.0 g/L citric acid, 2.0 g/L
NH4NO3, 0.5 g/L MgSO4·7H2O, and 0.05 g/L ferric ammonium citrate, pH 7.5) with 5 g/L phytosterols
(purity > 95.0%, every 100 g of phytosterol contained 47.5 g of β-sitosterol, 26.4 g of campesterol, 17.7 g
of stigmasterol, 3.6 g of brassicasterol and 4.8 g of undetermined components) (Zhejiang Davi
Pharmaceutical Co., Ltd., Zhejiang, China) [29]. Cholesterol (100.0 g/L) and phytosterol (100.0 g/L) was
emulsified in Tween 80 (5% w/v) aqueous solution at 121 °C for 60 min before use. The shake flask
experiments of M. neoaurum strain were carried out at 30 °C and 200 rpm.

For resting cell conversion, according to an inoculum volume ratio of 1:10 (v/v), the cultivated cells were
transferred into 150 mL of MYC/02 medium in 1000-mL shake flasks for the growth at 30 °C and 200
rpm. The cells were harvested by the centrifugation at 8,000 g for 15 min, washed with 20 mM KH2PO4,
and diluted into 200 g/L of cell suspensions. The subsequent conversion step was performed in 250-mL
flasks containing 100 g/L mycobacterial cells, 20 g/L phytosterols and 80 g/L hydroxypropyl-β-
cyclodextrin (HP-β-CD, RSC Chemical Industries Co., Ltd., Jiangsu, China) in at 30 °C and 200 rpm [30].
Standard 9-OHAD (99%) was purchased from J&K Scientific Ltd. (Beijing, China). Standard reference 4-
HBC (97%) was purified and identified by ourselves [7].

Construction of genetically modified strains

Target gene-deleted strains were obtained through allelic homologous recombination in mycobacteria as
previously described [31]. p2NIL and pGOAL19 were used for the construction of the homologous
recombination plasmids (Additional file 1: Table S1). The knockout-plasmids p19-gene, including p19-
hadA, p19-mmaA2, p19-hadC, p19-mmaA1, p19-mmaA3, p19-mmaA4, p19-pks13 and p19-kasB, was
transferred into mycobacterial cells via electroporation, respectively. Then, the target gene deficient strain
can be obtained following the two-step screening process [32].

To complement the deficient-gene function, the complete gene sequence of kasB was firstly amplified
from the wild type strain with the primer pairs (C-kasB-F & C-kasB-R) (Additional file 1: Table S2). After
double digestion with EcoRI and HindIII, the enzyme-digested fragment was inserted into the pMV261 to
create a recombinant p261-kasB plasmid. This constructed recombination plasmid could be used to
overexpress the carried kasB in multiple copies. Moreover, the expression cassette of the target kasB
containing a heat shock promoter hsp60 was obtained from the recombinant p261-kasB through double-
digestion with XbaI and HindIII then integrated into the pMV306 to create a complemental plasmid p306-
kasB. The constructed plasmid could be integrated into chromosomal DNA in single copy to complement
the disrupted gene function.

Analysis of cell permeability and steroid uptake performance

The permeability change of cell envelope was estimated by measuring the fluorescence intensity of cells
labeled by fluorescein diacetate (FDA, Aladdin Reagents (Shanghai) Co., Ltd., Shanghai, China) according
to previous procedures with some minor amendments [33]. The same wet weight of mycobacterial cells
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were suspended in 4.5 mL of phosphate buffer (cell density reached 106 cells/mL), mixed with 0.5 mL of
FDA acetone solution (2 mg/mL) and then vibrated at 32 °C for 10 min before the detection with a
Fluoroskan Ascent fluorescence spectrophotometer (Thermo Labsystems Inc., PA, USA). Maximum
excitation wavelength for the detection was 485 nm, and the emission wavelength was 538 nm.

  The quantity of cholest-4-en-3-one (purity > 95.0%, Shanghai TITAN Scientific Co., Ltd., China) entering
mycobacterial cells per unit time was determined to check for the cell permeability change. This steroid
was emulsified in Tween 80 (5% w/v) aqueous solution at 121 °C for 60 min in advance for use. The
cultivated cells were inoculated into 30 mL of MYC/02 medium with 1.0 g/L cholest-4-en-3-one. After 12-h
growth, 5 mL of culture solution was sampled, centrifuged at 12,000 g for 10 min, washed with 1.0 mL of
ddH2O for two times, and then washed with 1.0 mL of the mixture of petroleum ether and ethyl acetate
(6:4, v/v) to remove the cholest-4-en-3-one from the media. The cells (50 mg, wet weight) were then
suspended in 1.0 mL of the mixture of acetonitrile and ddH2O (7:3, v/v). Then, 0.8 g of glass beads were
added in the suspension. The cells were destroyed with FastPrep-24 instrument (MP Biomedicals, CA,
USA) and centrifuged at 12,000 g for 10 min. Cholest-4-en-3-one entering cells could be released and
dissolved in acetonitrile. The extracts were analyzed with a reversed-phase C18-column (250 mm × 4.6
mm) at 254 nm with the Agilent 1100 series HPLC system. The mixture of methanol and water (8:2, v/v)
was used as the mobile phase.

Analysis of mycolic acid methyl esters (MAMEs)

The MAMEs were extracted and analyzed as previously described [2, 17, 34]. Briefly, 50 mg (in wet weight)
of mycobacterial cells were collected at 12,000 g for 10 min. After adding 0.5 mL of the mixture of
methanol and chloroform (2:1, v/v), the homogenized mixture was incubated at 60 °C for 2 h and
centrifuged at 12,000 g for 10 min. The polar lipids including TMM and TDM were dissolved in the
supernatant.

Next, 500 μL of 10% tetrabutylammonium hydroxide (Sigma-Aldrich LLC., MO, USA) was added to the
above defatted cells or 50 mg of whole cells and heated at 100 °C overnight. After cooling, 500 μL of
ddH2O, 250 μL of dichloromethane, and 62.5 μL of iodomethane (Sigma-Aldrich LLC., MO, USA) were
added into the mixture. Then, the diluted mixture was stirred for 30 min and centrifuged at 12,000 g for 10
min to remove the upper layer. The lower organic layer was washed with 1.0 mL of 1 M hydrochloric acid,
followed by 1.0 mL of ddH2O. The reaction solution was dried under a stream of nitrogen. The residue
was dissolved in a mixture of toluene (0.2 mL) and acetonitrile (0.1 mL), followed by the addition of
acetonitrile (0.2 mL) for 1-h incubation at 4 °C. The MAMEs were centrifuged at 12,000 g for 10 min and
then re-suspended in 200 μL of dichlormethane.

The extracted mycolic acids were analyzed by silica gel TLC plates in a solvent system (chloroform:
methanol, 90:10, v/v). The mean grayscale intensity of spots in the TLC plate was analyzed with Quantity
One (Version 4.6.6, Bio-Rad Laboratories, CA, USA) The relative abundances of the polar mycolic acids
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(TMM and TDM) and MAMEs were calculated, respectively. The keto-MA spots on preparative silica gel
TLC were purified for MALDI-TOF-MS (Xevo G2, Waters, Ltd., MA) analysis as described [16].

Sterol bioconversion and the extraction and analysis of steroidal intermediates

Both vegetative cells and resting cells were determined to assess the sterol conversion capability [2, 30].
Firstly, the vegetative cell biotransformation medium (0.5 mL) was extracted with the same volume of
ethyl acetate. Then the sample containing steroidal intermediates from resting cell transformation
system was extracted with ten times of volume of ethyl acetate.

A gas chromatography (GC) system 7820A (Agilent Technologies, CA, USA) was used for the quantitative
determination of cholesterol and phytosterols. The ethyl acetate extracts (5 μL) were injected into a DB-5
column (30 m × 0.25 mm (i.d.) × 0.25 μm film thickness, Agilent Technologies, CA, USA). The oven
temperature was programmed as follows: 200 °C for 2 min, 200 °C to 280 °C within 4 min, 280 °C for 2
min, 280 °C to 305 °C within 1.5 min, and 305 °C for 10 min. Inlet and flame-ionization detector
temperatures were maintained at 320 °C. Nitrogen carrier gas flow was 2 mL/min at 50 °C. The sum of
three major components (β-sitosterol, campesterol and stigmasterol) was calculated to assess the
utilization of phytosterols as previously described [29].

A 1100 series high-performance liquid chromatography system (HPLC) (Agilent Technologies, CA, USA)
was employed to analyze the extracts containing 9-OHAD or 4-HBC. The prepared samples were analyzed
with a reversed-phase XDB-C18-column (250 mm × 4.6 mm, 30 °C) (Agilent Technologies, CA, USA) at 254
nm. The mixture of methanol and water (8:2, v/v) was used as the mobile phase. The mass concentration
of 9-OHAD was calculated using the standard calibration curve constructed at the same time. The mass
concentration of 4-HBC produced by the WIII and WIIIΔkasB strain was calculated using the 4-HBC
standard calibration curve.

Results And Discussion
Disruption of the mycolic acid synthesis genes disturbed the sterol conversion

Mycolic acids, as the main cell wall constituent, are generally synthesized in the cytoplasm (Fig. 1a) [17,
18]. The interference with the nonessential gene, such as the (3R)-hydroxyacyl-ACP dehydratase hadA
and methyl mycolic acid synthase 1 mmaA1, etc., involved in the synthesis of mycolic acids might reduce
the tightness of the cell wall and lead to a stable change in cell permeability. For further studies, the
genes involved in the synthesis of mycolic acids were preliminarily evaluated by the comparative
transcriptome analysis between the wild type strain and its primary derivative 9-OHAD-producing strain
(MnΔkstD1) [31]. We planned to screen some genes whose transcription levels were remarkably
fluctuated during the accumulation of 9-OHAD. However, the transcriptional levels of most of the
annotated genes showed discrete variations in the bioconversion of sterols to 9-OHAD (Fig. 1b, Additional
file 1: Table S3).
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Next, we had to randomly select some dispensable genes and obtained the targeted deletion of the
mycolic acid synthesis pathway in the final 9-OHAD-producing strain WI. Interestingly, the inactivation of
most of the accessary genes resulted in a slight alteration of sterol utilization rate in all the strains except
the WIΔkasB strain (Fig. 1c). As expected, the deletion of the gene remarkably increased the sterol
utilization by 143% at the 72-h sampling time. Early studies demonstrated that the kasB was a
nonessential gene responsible for the extension to full-length mero-mycolic acids in M. tuberculosis [16].
The result indicated that a meaningful permeability change might occur in the mutant strain.

Functional KasB maintained the cell permeability and the balance of steroid uptake in M. neoaurum

The possible kasB genome region in M. neoaurum ATCC 25795 (GenBank Accession No.
NZ_JMDW00000000.1) was re-confirmed by comparing the homologous regions in Mycobacterium
tuberculosis H37Rv (GenBank Accession No. NC_000962), Mycobacterium smegmatis mc2 155
(GenBank Accession No. NC_008596) and Mycobacterium neoaurum VKM Ac-1815D (GenBank
Accession No. CP006936.2). The kasB gene (GeneBank: NZ_JMDW01000013.1; Region: 177334…
178587, 1254-bp) in M. neoaurum shared high sequence identity with its homologs (Additional file 2: Fig.
S1), indicating its conserved function in mycobacteria. In addition, the flanking genes of kasB also had
the similar frame. These results proved that the annotation and position of the kasB gene was correct
(Additional file 2: Fig. S1; Additional file 1: Table S4). The allelic homologous recombination was
employed to delete the kasB cassette in the wild type M. neoaurum. A 1171-bp upstream sequence and
1111-bp downstream sequence were amplified to construct the plasmid vector for gene knockout
(Additional file 2: Fig. S2). PCR and electrophoresis analysis results of the kasB region in genomic DNA
confirmed the occurrence of allelic replacement in M. neoaurum (Fig. 2a).

In mycobacteria, kasA and kasB encode two distinct fatty acid synthase II complexes. KasA is
responsible for the initial elongation of mycolic acids less than 40 carbons, whereas KasB is involved in
the extension from 40 carbons to 54 carbons [18]. The subsequent deletion of kasB in the mutant strain
WI might be disadvantage to test the phenotype. In order to assess the effect of kasB on the cell
permeability, the MnΔkasB mutant strain and the complemented strain MnΔkasB+kasB were generated
for subsequent experiments. The deletion of kasB led to an obvious alteration of cell growth in the
presence of cholesterol and the MnΔkasB strain growth was much faster than that of its parental wild
type strain and the complemented strain (Fig. 2b). The acceleration in growth rate of the MnΔkasB strain
was similarly to the result of mmpL3 deletion in M. neoaurum [2]. The enhanced cell permeability might
raise the supplement of steroids in the cell wall deficient strain. Subsequently, the permeability of kasB-
deficient strain was assessed through determining the fluorescence intensity of the cells after labeling
with fluorescein diacetate (FDA) (Fig. 2c). The result showed that the MnΔkasB mutant strain had the
more permeable cell wall than that of the wild type strain. The penetrated FDA of MnΔkasB strain was
about two times compared to the parental Mn strain after 30 min of incubation. This wild type property
could be restored in the mutant strain upon the introduction of the complete functional kasB gene. To
further confirm this, the analog of cholesterol, cholest-4-en-3-one was employed as a label to check for
the cell permeability to steroids [2]. The analysis indicated that the improved the cell wall permeability



Page 10/20

indeed resulted in about 2.3 times enhancement in the uptake of cholest-4-en-3-one in the kasB-deficient
strain after 12 hours of growth (Fig. 2d). The improvement might be interpreted as a chain effect caused
by the enhanced cell permeability. These results further confirmed that the observed enhancement of
sterol conversion and utilization was probably attributed to the improved cell permeability through the
inactivation of kasB function.

Deletion of kasB changed the composition of cell wall mycolic acids

Previous studies demonstrated that kasB was dispensable for normal mycobacterial growth in M.
marinum and M. smegmatis [24, 35]. The kasB in M. neoaurum was proved to play a similar role in
mycobacterial growth. The mechanism for the alternation of cell permeability with respect to the kasB
deficiency in M. neoaurum remains unclear. Notably, KasB is responsible for the extension of mero-
mycolic acid carbon chain [16]. This function indicated that the increased permeability was likely
attributed to the changed KasB-responsible cell wall mycolic acid synthesis in the mutant strain.

In the TLC analysis results, the polar TMM and TDM showed no obvious difference, whereas the mycolic
acid methyl esters (MAMEs) displayed a slight decrease in the MnΔkasB mutant strain (Fig. 3a;
Additional file 2: Fig. S3). The relative abundances of the α-MA, methoxy-MA and keto-MA were
respectively 25.1%, 23.5%, and 51.4% in the MnΔkasB strain and 23.5%, 22.6%, and 53.9% in its parental
strain Mn (Fig. 3b). The decrease in keto-MA content was similar to the trend of the kasB-deleted M.
tuberculosis [16]. Next, the keto-MA spot was purified and analyzed by MALDI-TOF MS. The spectrogram
showed a changed keto-MA in MnΔkasB strain compared with that of the wild type Mn strain (Additional
file 2: Fig. S4). Considering the function of kasB in other mycobacteria, the inactivation of the kasB was
most likely shortened the length of the keto-MA, the specific changes of MA need to be further
determined.

Loss of kasB led to a remarkable improvement in steroid intermediate productivity

To determine the effect of altered MAMEs and permeability on the production of steroidal intermediates,
the transformation phenotype of the 9-OHAD-producing strain WI and WIΔkasB was determined. The
result showed that the growth speed of the mutant strain WIΔkasB was not changed obviously under the
sterol-free culture conditions (Additional file 2: Fig. S5). In addition, the cell morphology of mutant strain
was unaffected apparently (Fig. 4a). This phenomenon was different with the deletion of kasB in M.
tuberculosis [16]. These results indicated that the kasB was possibly not the sole functional enzyme
involved in the specific elongation step of mero-MAs in M. neoaurum ATCC 25795. Despite the deficiency
of kasB, the stability of cellular structure could be still maintained in M. neoaurum. In view of the
enhanced uptake of sterols resulted from the altered cell permeability, the accumulation capability of
target steroids was preliminary analyzed. The vegetative cell transformation led to a remarkably
increased 9-OHAD yield in the WIΔkasB strain compared to its parental strain (Fig. 4b). The deletion of
kasB increased the target steroid by 137.7% from 0.61 g/L to 1.45 g/L after 72-h conversion. However, the
increase precipitously declined to 28% after 96-h of biotransformation.
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Next, a resting cell bioconversion system widely applied in the industry was used to further assess the
enhancement effect of C19 steroid intermediate 9-OHAD generated by the kasB deletion (Fig. 4c). The
highest increase was detected in WIΔkasB strain after 72-h transformation with the production of 9.8 g/L,
which was 48.5% higher than that of its parental WI strain (6.6 g/L). Ultimately, the WIΔkasB strain
yielded 10.9 g/L 9-OHAD with a molar yield of 69.5%, whereas its parental strain WI only produced 8.9
g/L with a molar yield of 56.7%. In addition, if the bioconversion time was extended by 48 h, the 9-OHAD
production of WI strain would increase to about 10.3 g/L, which was still lower than that of the WIΔkasB
strain. In other words, the modification of kasB gene shortened the conversion time by more than 33%.
The screened kasB stably remodeled the cell wall mycolic acid component, thus resulting in an increase
of 22.5% in the production of C19 steroidal 9-OHAD.

The enhancement effect of kasB deficiency had been tested in another typical C22 steroidal intermediate
4-HBC producing strain WIII [7]. Similarly, an obvious improvement in the target intermediate was detected
in the vegetative WIIIΔkasB cell (Additional file 2: Fig. S6), indicating that the strategy of disrupting the
mycolic acid synthesis might be efficient for the stable evolution towards target steroidal producer.
Accordingly, the assessment of resting cells showed that the 4-HBC production in the WIIIΔkasB strain
was increased by 34.5% from 5.8 g/L to 7.8 g/L after 96-h conversion (Fig. 4d). In addition, the 4-HBC
yield was improved by 37.5% from 6.4 g/L to 8.8 g/L after 120-h biotransformation [2]. Thus, the
modification of kasB is highly effective for the self-enhancement of steroid intermediate conversion in M.
neoaurum.

Conclusions
This study aimed to develop a gentle and stable self-excitation strategy of steroid intermediate
conversion by the disruption of cell wall components in mycobacterial cells. To understand the important
role of MAs in cell permeability related to the uptake of sterol substrate, the dispensable genes of MA
synthesis in M. neoaurum were deleted respectively. The modification of kasB showed a striking increase
in sterol conversion rate, indicating a meaningful change in the cell wall mycolic acids. The deficiency of
the screened kasB gene significantly changed the cell wall permeability by altering the constitution of
MAMEs and shortening the length of mycolic acids in the cell wall, thus resulting in an efficient self-
enhancement of steroidal intermediate conversion.
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Name Description Source
E. coli DH5α E. coli strain for cloning TIANGEN

CO., LTD.
M. neoaurum
ATCC 25795
(Mn)

Wild type strain, the starting strain ATCC

MnΔkstD1 kstD1 deleted in M. neoaurum ATCC 25795 [6]
WI kstD1, kstD2 and kstD3 deleted in M. neoaurum ATCC

25795, 9-OHAD producing strain
[6]

WIΔhadA hadA deleted in WI strain This study
WIΔhadC hadC deleted in WI strain This study
WIΔkasB kasB deleted in WI strain This study
WIΔmmaAN mmaAN (N represents 1, 2, 3, 4) deleted in WI strain This study
WIΔpks13 pks13 deleted in WI strain This study
MnΔkasB kasB deleted in M. neoaurum ATCC 25795 This study
MnΔkasB+kasB kasB complemented in MnΔkasB strain This study
WIII kshA1, kshA2, hsd4A, kstD1, kstD2 and kstD3 deleted in

M. neoaurum ATCC 25795, 4-HBC producing strain
[7]

WIIIΔkasB kasB deleted in WIII strain This study
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Figure 1

Rational disruption of the mycolic acid synthesis disturbed the sterol conversion. a Profile of the mycolic
acid synthesis pathway in mycobacteria cells [18]. FAS-I, fatty acid synthase I; FabD, malonyl CoA-acyl
carrier protein (ACP) transacylase; FabH, β-ketoacyl-ACP synthase III; MabA, β-ketoacyl-ACP reductase;
HadABC, β-hydroxyacyl-ACP dehydratase subunits A, B and C; InhA, enoyl-ACP reductase; KasA, β-
ketoacyl-ACP synthase 1; KasB, β-ketoacyl-ACP synthase 2; PcaA, proximal cyclopropanation of alpha-
MAs enzyme; MmaA1-4, methyl mycolic acid synthase; CmaA2, cyclopropyl mycolic acid synthase;
AccD4, propanoyl-CoA carbon dioxide ligase; AccD5, propionyl-CoA carboxylase; FadD32, long-chain-
fatty-acid-AMP synthetase, Pks13, polyketide synthase. b Transcription changes in the dispensable genes
involved in mycolic acid synthesis. All data indicate log2 fold change ratio of the gene expression. Mn,
the wild type M. neoaurum was cultured in MYC/02 medium. Mn+C, the wild type strain was cultivated in
the presence of phytosterol. MnΔkstD1+C, the primary 9-OHAD-producing strain MnΔkstD1 was cultured
in MYC/02 medium with phytosterol addition. Data were from two independent analyzes. c The
alternation of sterol utilization rate caused by the targeted gene deletion in 72 hours sample time. Data
represent the mean standard deviation of three measurements.
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Figure 2

Effects of the deficiency of kasB on the cell permeability. a Validation of allelic replacement at the kasB
locus in M. neoaurum ATCC 25795. The wild type (WT) 3,260-bp was replaced by a 2282-bp fragment
ligate with the upstream and downstream homologous arm. b Growth characteristic of the kasB mutant
strain. The wide-type M. neoaurum (Mn), the kasB-deficient strain (MnΔkasB) and the kasB-
complemented strain (MnΔkasB+kasB) were cultured in MM containing 1.0 g/L cholesterol. c
Determination of the cell permeability in the kasB mutant strain. The cells were stained with FDA,
incubated at 32 °C for 10 min, and analyzed by a fluorescence spectrophotometer. The mutant strain
MnΔkasB displayed about two times penetrated FDA compared with that in its parental Mn strain after
30 min of incubation. d Influences of the deficiency of kasB on the steroid (cholest-4-en-3-one) uptake.
The cholest-4-en-3-one entering the cells after 12-h growth in MM containing 1.0 g/L cholest-4-en-3-one
was determined. The uptake of cholest-4-en-3-one in the strain MnΔkasB showed about 2.3 times
improvement than that of the wild type Mn strain.
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Figure 3

Effects of kasB on the component of cell wall mycolic acids in M. neoaurum. a The strain carrying the
wild type kasB (Mn) or the deficient kasB (MnΔkasB) was cultivated in the presence of 1.0 g/L
phytosterols. MAMEs (α-, methoxy- and keto- forms of mycolic acids) were isolated from M. neoaurum
cells. TLC plates were revealed with cupric sulfate (10% w/v in an 8% v/v phosphoric acid solution). b
Relative intensity of the mycolate compared to the total mycolates was calculated. The deletion of kasB
caused a slight disturbance of MAMEs components in MnΔkasB (α-: 25.1%, methoxy-: 23.5%, and keto-:
51.4%) compared with that of the Mn strain (α-: 23.5%, methoxy-: 22.6%, and keto-: 53.9%).

Figure 4
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Enhancement of the 9-OHAD productivity in M. neoaurum. a Cell morphologies of the engineered mutant
strains revealed by a scanning electron microscope. The cell morphology of the WIΔkasB stain showed
no obvious defects compared to that of its parental strain WI. b Assessment of 9-OHAD yield for the
deficiency of kasB. Quantitative analyses of the 9-OHAD yield in the vegetative cell transformation of 5
g/L phytosterols. c Determination of the C19 intermediate 9-OHAD productivity in the constructed 9-
OHAD-producing strain WIΔkasB by a resting cell system containing 20 g/L of phytosterols. d
Measurement of the C22 intermediate 4-HBC productivity in the engineered producer WIIIΔkasB by resting
cell conversion in the presence of 20 g/L phytosterols.
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