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Abstract 39 

Background: There are currently no methodological studies on the performance of the statistical models for 40 

estimating intervention effects based on the time-to-recurrent-event (TTRE) in stepped wedge cluster 41 

randomised trial (SWCRT) using an open cohort design. This study aims to address this by evaluating the 42 

performance of these statistical models using an open cohort design with the Monte Carlo simulation in 43 

various settings and their application using an actual example. 44 

Methods: Using Monte Carlo simulations, we evaluated the performance of the existing extended Cox 45 

proportional hazard models, i.e., the Andersen-Gill (AG), Prentice-Williams-Peterson Total-Time (PWP-TT), 46 

and Prentice-Williams-Peterson Gap-time (PWP-GT) models, using the settings of several event generation 47 

models and true intervention effects, with and without stratification by clusters. Unidirectional switching in 48 

SWCRT was represented using time-dependent covariates. 49 

Results: Using Monte Carlo simulations with the various described settings, the PWP-GT model with 50 

stratification by clusters showed the best performance in most settings and reasonable performance in the 51 

others. The only situation in which the performance of the PWP-TT model with stratification by clusters was 52 

not inferior to that of the PWP-GT model with stratification by clusters was when there was a certain amount 53 

of follow-up period, and the timing of the trial entry was random within the trial period, including the follow-54 

up period. The AG model performed well only in a specific setting. By analysing actual examples, it was 55 

found that almost all the statistical models suggested that the risk of events during the intervention condition 56 

may be somewhat higher than in the control, although the difference was not statistically significant. 57 
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Conclusions: The PWP-GT model with stratification by clusters had the most reasonable performance when 58 

estimating intervention effects based on the TTRE in SWCRT in various settings using an open cohort design. 59 

 60 

Keywords 61 

Stepped-wedge, Cluster randomized trial, Open cohort design, Recurrent event, Time-to-event, Statistical 62 

model, Time-dependent covariate, Simulation, Comparison 63 

 64 

Background 65 

A cluster randomised trial (CRT) is a randomised trial design in which a cluster of regions or sites is used 66 

when it is not possible or appropriate to assign an intervention to an individual patient, like a randomised 67 

controlled trial (RCT) [1, 2]. The stepped wedge CRT (SWCRT) is a type of CRT, in which the order that the 68 

interventions are applied to the clusters is randomised, and all clusters are sequentially transferred 69 

(unidirectional switch) from the control condition to the intervention condition [3, 4].  70 

There are three main types of SWCRT design: (i) continuous recruitment short exposure, (ii) closed cohort, 71 

and (iii) open cohort [5]. In the open cohort design, each subject is assessed repeatedly at a series of 72 

measurement points or at a subject-specific time point, such as the occurrence of an event. In this design, 73 

each subject may enter and leave the trial at any time during the trial period. Thus, some subjects are exposed 74 

to both control and intervention conditions during the trial, while others are only exposed to one. 75 

The INSPIRED trial, which is the actual example used in this study, was a multi-centre SWCRT that 76 
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examines whether a model of care that provides specialist palliative care interventions in residential care 77 

homes (i.e. the intervention condition) leads to fewer (acute care) hospitalisations and shorter lengths of stay 78 

in hospital for care home residents, when compared to usual care (i.e. the control condition) [6]. A schematic 79 

representation of actual example is presented in Fig. 1. It is an open cohort design as all the residents in each 80 

facility at the start of the trial and all-new enrolments to the facility after the start of the trial were included. 81 

Many residents were exposed to both the control and intervention conditions, as they remained in their 82 

residences continuously unless they died or were discharged from the care home. The primary outcome was 83 

the length of the hospital stays, and the secondary outcomes were the number of hospitalisations and the cost.  84 

Some residents never experienced hospitalisation, while others were repeatedly hospitalised in the actual 85 

example. If the same event occurs repeatedly over time to the same individual it is called a recurrent event 86 

[7]. A common way to analyse recurrent event is the recurrence rate (average number of recurrences per unit 87 

time), which corresponds to the No. of hospitalisations per facility-month as a secondary outcome in the 88 

actual example. This analysis requires the assumption that the incidence of hospitalisation is always constant 89 

in the interval per facility-month which is generally a strong assumption. In addition, even if the number of 90 

hospitalisations per facility-month are the same, there may be differences in the time it takes for each 91 

hospitalization to occur, and this is called the time to hospital admission (TTHA) and may represent the 92 

effects of the intervention. Since admission and discharge data are collected for each hospitalisation in the 93 

actual example, that is, the TTHA is measured repeatedly, it may be useful to evaluate hospitalisations as 94 

recurrent events within the framework of a time-to-event (TTE) analysis. 95 
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When assessing the impact of a covariate on the TTE with a hazard ratio (HR), the Cox proportional hazard 96 

(CoxPH) model is most often used [8], and it assumes that the event is a one-time terminal event. When the 97 

CoxPH model is applied to recurrent events, only time-to-first-event (TTFE) can be included in the analysis. 98 

Against this background, the extension of the CoxPH model to recurrent events has been actively pursued, 99 

especially in the 1980s [9-11], and it has mainly been used to evaluate the time-to-recurrent-event (TTRE) in 100 

RCTs. 101 

Methods to analyse TTE in SWCRT are currently unclear [12]. SWCRT using an open cohort design, by 102 

its nature, must deal with subjects who are exposed to both the control and intervention conditions (observed 103 

across the unidirectional switch). When estimating the intervention effects based on the TTFE, if the change 104 

in the time-dependent covariate is independent of TTE, then the unidirectional switch in the CoxPH model 105 

can be explained using the time-dependent covariate [13, 14], and methodological studies on the performance 106 

in the context of SWCRT have previously been conducted [15]. In TTRE, the existing extended CoxPH 107 

model with time-dependent covariates possibly apply to SWCRT with unidirectional switching [16, 17, 18]. 108 

In addition, CRT is known to have a problem with cluster effects when the outcomes of individuals in the 109 

same cluster become similar for various reasons, and this is also a concern for SWCRT. When estimating 110 

intervention effects based on TTFE, the cluster effect in SWCRT can be treated using the CoxPH model 111 

stratified by clusters [15], as it assumes that each cluster's baseline hazard function is different. For TTRE, 112 

the existing extended CoxPH model stratified by clusters possibly be used. 113 

However, there are currently no methodological studies on the performance of the statistical models for 114 
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estimating intervention effects based on TTRE in SWCRT with an open cohort design, or examples of its 115 

application to actual studies. Investigating the performance of the statistical models used to estimate 116 

intervention effects based on TTRE in SWCRT using an open cohort design in various settings, may 117 

contribute to the selection of statistical models for the actual planning and analysis of SWCRT. 118 

The purpose of this study was to evaluate "which statistical models resulted in better performance 119 

estimating intervention effects using TTRE in SWCRT with an open cohort design" with the Monte Carlo 120 

simulation (hereafter, simulation) in various settings. We also applied each statistical model to hospital 121 

admission data to test the actual example and interpreted the results based on the simulation results. 122 

 123 

Methods 124 

Actual example 125 

Details of the trial design, interventions, resident background information, and efficacy results of the 126 

INSPIRED trial have been published previously [6]. The trial included 1700 residents from 12 care homes 127 

in Australia, of which 1089 (64.1%) were residents at the start of the trial, and the remaining 611 (35.9%) 128 

became residents after the start of the trial. There were 1149 hospitalisations during the trial, of which 943 129 

hospitalizations of more than 24 hours (> 24 h) were used for the primary outcome, length of stay in hospital. 130 

Of the residents, 377 had only one hospitalization of > 24 h, while 211 had multiple hospitalizations of > 24 131 

h (137 had two, 45 had three, 11 had four, and 18 had four or more). The number of residents who died during 132 

the trial period was 534 (31.4%). The secondary outcome, No. of hospitalizations > 24 h per facility-month, 133 
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was 5.6 in the control condition and 4.3 in the intervention condition, a decrease of approximately 23% (no 134 

adjustment by covariates or comparison by estimation/statistical testing was performed). 135 

 136 

Basic notation 137 

The timing of the unidirectional switch (henceforth, switch) in each cluster of the SWCRT is called a step, 138 

and here, we consider SWCRT with 𝑚 clusters and 𝑠 steps. For simplicity, we assume that the number of 139 

clusters to be switched from the control condition to the intervention condition in one step is one (𝑠 = 𝑚). In 140 

the 𝑖th cluster (𝑖 = 1, … , 𝑚), 𝑛𝑖 is the number of subjects observed during the entire trial duration. 141 

Assuming that the start of the test is 𝑡𝑆 and the end of the last step period is 𝑡𝐸, the timing of the switch 142 

in each cluster is calculated as follows: 𝑊𝑖 = 𝑡𝑆 + 𝑖 ∗ (𝑡𝐸 − 𝑡𝑆) / (𝑚 + 1) , and the distance between 143 

switches is calculated as follows: 𝑊𝑑 = 𝑊𝑖+1 − 𝑊𝑖 = 𝑊𝑖 − 𝑊𝑖−1 = (𝑡𝐸 − 𝑡𝑆) / (𝑚 + 1). Let 𝑑𝑖𝑗 be the 144 

time point at which the 𝑗th subject (𝑗 = 1, … , 𝑛𝑖) in the 𝑖th cluster entered the trial. The distance 𝑤𝑖𝑗 to 145 

the switch for each subject is defined as follows: 146 

{ 𝑤𝑖𝑗 = 𝑊𝑖 − 𝑑𝑖𝑗     𝑊𝑖 ⩾ 𝑑𝑖𝑗 𝑤𝑖𝑗 = 0                  𝑊𝑖 < 𝑑𝑖𝑗 . 147 

Where ℎ𝑖𝑗𝑘(𝑡) is the hazard function of the 𝑘th recurrence of the 𝑗th subject in the 𝑖th cluster at 148 

time 𝑡 , and ℎ0𝑖𝑘(𝑡)  is the baseline hazard function of the 𝑘 th recurrence of the 𝑖 th cluster at time 𝑡 . 149 

𝑌𝑖𝑗𝑘(𝑡) is the indicator variable for the 𝑘th recurrence of the 𝑗th subject in the 𝑖th cluster at time 𝑡, and 150 

this is 1 if the subject is at risk of recurrence and under observation, and 0 if not. 𝑋𝑖𝑗𝑘 is a vector of time-151 

independent covariates for the 𝑘th recurrence of the 𝑗th subject in the 𝑖th cluster, and 𝛽𝑖𝑘 is a vector of 152 
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fixed parameters for the time-independent covariates of the 𝑘th recurrence of the 𝑖th cluster. 𝑍𝑖𝑗𝑘(𝑡) is the 153 

intervention indicator as a time-dependent covariate for the 𝑘 th recurrence of the 𝑗 th subject in the 𝑖 th 154 

cluster, which is 0 for 𝑡 < 𝑤𝑖𝑗  and 1 for 𝑡 ⩾ 𝑤𝑖𝑗  (changes before and after the switch). 𝛽𝑡𝑖𝑘  is the 155 

parameter for the intervention effect for the 𝑘th recurrence of the 𝑖th cluster. The subscript 𝑖 is omitted if 156 

it is assumed that each cluster has a common effect. The subscript 𝑘 is omitted if it is assumed that each 157 

recurrence has a common effect. 158 

 159 

Statistical models 160 

The first model considered was the CoxPH model [8, 14]. The hazard of the 𝑗th subject in the 𝑖th 161 

cluster at time 𝑡 is expressed as follows:. 162 

ℎ𝑖𝑗(𝑡) = ℎ0𝑖(𝑡) exp (𝛽𝑡𝑖𝑍𝑖𝑗(𝑡) + 𝛽𝑖′𝑋𝑖𝑗). 163 

As was previously mentioned, applying the CoxPH model to recurrent events would result in a loss of 164 

information because only the TTFE of each subject can be included in the analysis, and the second and 165 

subsequent events are ignored. Taking recurrent events into account should theoretically improve the 166 

efficiency of estimating the effects of interventions [19]. In the following, we present an extended CoxPH 167 

model that allows for the inclusion of TTRE in the analysis. 168 

The Andersen and Gill (AG) model assumes a common baseline hazard function for all events, independent 169 

of the number of previous recurrences, and it is considered beneficial when investigating the overall 170 

intervention effect on the occurrence of recurrent events [9]. The hazard for the 𝑗th subject in the 𝑖th cluster 171 
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at time 𝑡 is expressed as follows: 172 

ℎ𝑖𝑗(𝑡) = 𝑌𝑖𝑗(𝑡) ℎ0𝑖(𝑡) exp (𝛽𝑡𝑖𝑍𝑖𝑗𝑘(𝑡) + 𝛽𝑖′𝑋𝑖𝑗𝑘). 173 

In the usual CoxPH model, a subject who has experienced one event is no longer at risk for that event. In 174 

contrast, the AG model assumes that subjects who have experienced at least one event remain at risk unless 175 

they drop out of the trial. In the AG model, multiple events that occur within the same subject are considered 176 

to be independent. However, because they may not be independent in reality, it is advised that robust variance 177 

is used to handle the correlation within the subject when inferring the parameter vector [20, 21]. 178 

The Prentice-Williams-Peterson (PWP) model assumes a different baseline hazard function for each 179 

recurrence and accounts for correlation by stratifying by the number of prior recurrences. Therefore, it is 180 

considered beneficial when the risk of recurrence differs between recurrences [17]. The hazard ℎ𝑖𝑗𝑘(𝑡) for 181 

the 𝑘th recurrence is defined by the history of the covariates and the number of recurrences up to time 𝑡. 182 

Conditionally, it is assumed that the (𝑘 − 1)th recurrence is independent of the 𝑘th recurrence. Furthermore, 183 

it assumes that the subject is not at risk for the 𝑘th recurrence until the (𝑘 − 1)th recurrence, so that 𝑌𝑖𝑗𝑘(𝑡) 184 

is 0 until the (𝑘 − 1)th recurrence and 1 after that. 185 

The PWP model can be broadly divided into two models depending on the treatment of the time points. 186 

First, the PWP total-time (PWP-TT) model uses the time from the start of the follow-up to each recurrence. 187 

The hazard of the 𝑘th recurrence of the 𝑗th subject in the 𝑖th cluster at time 𝑡 is expressed as follows: 188 

ℎ𝑖𝑗𝑘(𝑡) = 𝑌𝑖𝑗𝑘(𝑡) ℎ0𝑖𝑘(𝑡) exp (𝛽𝑡𝑖𝑘𝑍𝑖𝑗𝑘(𝑡) + 𝛽𝑖𝑘′ 𝑋𝑖𝑗𝑘). 189 

The second is the PWP gap-time (PWP-GT) model, which uses the time from the occurrence of the 190 
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previous recurrence to each recurrence. The hazard of the 𝑘th recurrence for the 𝑗th subject in the 𝑖th cluster 191 

at time 𝑡 is expressed as: 192 

ℎ𝑖𝑗𝑘(𝑡) = 𝑌𝑖𝑗𝑘(𝑡) ℎ0𝑖𝑘(𝑡 − 𝑡𝑘−1) exp (𝛽𝑡𝑖𝑘𝑍𝑖𝑗𝑘(𝑡) + 𝛽𝑖𝑘′ 𝑋𝑖𝑗𝑘). 193 

As the number of recurrences increases in the PWP model, the number of subjects at risk becomes 194 

relatively small. This would make the estimates unstable, so limiting the data to a specific number of 195 

recurrences is usually necessary [22]. Due to these characteristics, the PWP model is helpful in situations 196 

where the number of recurrences per subject is small [17]. Our study assumes that each recurrence has a 197 

common effect when estimating parameters using the PWP model. 198 

For each of the statistical models described so far, there are two analysis policies: (i) with stratification by 199 

clusters, which assumes that the baseline hazard function is different for each cluster, and (ii) without 200 

stratification by clusters, which assumes that the baseline hazard function is the same for each cluster. 201 

The performance of each statistical model in the simulation was evaluated in terms of bias, mean square 202 

error (MSE), and coverage probability (CP). Bias is the difference between the estimates of the parameters 203 

of the intervention effect based on each statistical model and the true intervention effect 𝛽𝑡, where a positive 204 

value indicates underestimation and a negative value indicates overestimation; MSE is measured by the 205 

variance of the estimated intervention effect based on each statistical model and considers both bias and 206 

variability, with smaller values indicating better performance. CP is the proportion of the 95% confidence 207 

interval (CI) for the HR obtained by each statistical model that includes the HR based on the true intervention 208 

effect 𝛽𝑡. The closer the CI is to 0.95, the better the performance. 209 
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 210 

Data generation process 211 

For the time point 𝑑𝑖𝑗 of the 𝑗th subject in the 𝑖th cluster to enter in the trial, we use 𝑡𝑆 at the beginning 212 

of the trial and 𝑡𝐸 at the end of the last step period already mentioned, and generate them randomly within 213 

the interval of 𝑡𝑆 + ((𝑡𝐸 − 𝑡𝑆) ∗ 𝑒)/𝐸 or 𝑡𝑆 + ((𝑡𝐹 − 𝑡𝑆) ∗ 𝑒)/𝐸. From this point, the TTFE at least, always 214 

occurs starting from 𝑑𝑖𝑗 . Here, 𝑒  is a pseudo-random number generated from a uniform distribution, 215 

𝑒~𝑈(0, 1). 216 

𝑡𝐹 indicates the end of the trial and is expressed as 𝑡𝐹 = 𝑡𝐸 + (𝑊𝑑 ∗ 𝐹) using the distance 𝑊𝑑 between 217 

𝑡𝐸 and the switch at the end of the last step period, as described above. 𝐹 is a coefficient that specifies the 218 

follow-up period that may be set after the end of the last step period. When 𝐹 = 0, there is no follow-up 219 

period, and 𝑡𝐹 = 𝑡𝐸. If 𝐹 = 𝑋(> 1), there is a follow-up period of 𝑋 step after the end of the last step 220 

period. In the actual example, as shown in Fig. 1, each step is set every two months, and there is a follow-up 221 

period of 5 months (= 2.5 steps) after the end of the last step period. Based on the purpose and setting of the 222 

trial, other SWCRT have adopted a similar design [23-25].  223 

In the actual simulation, three policies are considered: (i) no follow-up period and 𝑑𝑖𝑗 = 𝑡𝑆 + ((𝑡𝐸 − 𝑡𝑆) ∗224 

𝑒)/𝐸; (ii) there is a follow-up period and 𝑑𝑖𝑗 = 𝑡𝑆 + ((𝑡𝐹 − 𝑡𝑆) ∗ 𝑒)/𝐸 (allow trial entry until the end of the 225 

follow-up period; illustrated in Fig. 2a); (iii) there is a follow-up period but 𝑑𝑖𝑗 = 𝑡𝑆 + ((𝑡𝐸 − 𝑡𝑆) ∗ 𝑒)/𝐸 226 

(terminate trial entry at the end of the last step period; illustrated in Fig. 2b). 227 

In addition, 𝐸 is a coefficient that specifies the timing of the trial entry. If 𝐸 = 1, the subject enters the 228 
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trial randomly between 𝑡𝑆 and 𝑡𝐸 or 𝑡𝐹, which reflects the open cohort design in that the subject may enter 229 

in the trial at any time. If 𝐸 is greater than 1, it reflects a situation where the entry of the trial is concentrated 230 

at an earlier stage of the trial (illustrated in Fig. 2c). In the actual example, 64.1% of the residents entered at 231 

the start of the trial. Depending on the purpose and setting of the trial, other SWCRT show similar situations 232 

[26, 27]. 233 

In the actual simulation, policies (i) to (iii) above regarding the follow-up period and the time of trial entry 234 

can be taken for 𝐸 = 1 and 𝐸 > 1, respectively. Our study adopts only policy (iii) instead of (ii) at 𝐸 > 1 235 

(illustrated in Fig. 2d). 236 

To compare our results with the secondary outcome of the actual example, No. of hospitalisations > 24 h 237 

per facility-month, we decided to treat only hospitalizations > 24 h as a TTE in this study. It was previously 238 

published [6] that the number of residents repeatedly hospitalised more than four times was very small. 239 

Therefore, in our study, the maximum number of recurrent events generated in the simulation was three. 240 

The relative performance of the statistical models used in TTRE, which are based on bias and variability, 241 

depend on the event generation model used in the simulation, and it is thus recommended that simulations 242 

based on multiple event generation models be considered [28]. Therefore, in this study, three types of event 243 

generation model were used. 244 

The first is the Poisson process, which generates TTEs based on exponential distributions independent of 245 

each other, not only between subjects but also within subjects. The exponential distribution consists only of 246 

scale parameters. The starting point of all TTEs is 𝑑𝑖𝑗 at the time of trial entry, and the hazard of a TTE is 247 
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always constant, regardless of the time and number of recurrences (illustrated in Fig. 3a). 248 

The second is the Weibull model, where the starting point of the first TTE is 𝑑𝑖𝑗, as in the Poisson process, 249 

but the starting point of the second and subsequent TTEs is the time of the previous event (illustrated in Fig. 250 

3b). Then, a Weibull distribution was assumed for the time between events within each subject. In addition 251 

to a scale parameter similar to an exponential distribution, the Weibull distribution contains the shape 252 

parameter. The Weibull distribution allows the hazard to vary with time depending on the setting of the shape 253 

parameter. As this model adopts a Weibull distribution with a common parameter from the first to the third 254 

TTE (i.e. the way the hazard changes are common from the first to the third TTE), we refer to it as the Weibull 255 

model (constant).  256 

The third model uses the same Weibull model as the second one, but adopts the Weibull distribution with 257 

different parameters between the "first TTE" and the "second and third TTE" (i.e., the way the hazard changes 258 

is different between the first and second and third TTEs), and so it is referred to as the Weibull model (change). 259 

In a simple RCT situation where an intervention effect exists, previous studies with time-independent 260 

covariates have shown that in the Poisson process, both AG and PWP-TT models perform well, while in the 261 

Weibull model (constant), only the PWP-TT model performs well, and the AG model performs poorly [28]. 262 

To generate TTREs that can account for unidirectional switching, which is assumed to be 263 

estimating intervention effects using the CoxPH model and several extended CoxPH models, we use a data 264 

generation process for the CoxPH model with time-dependent covariates, based on the three event generation 265 

models previously described [29]. If the generated TTRE exceeds 𝑡𝐸 or 𝑡𝐹, it is treated as right-censored at 266 
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𝑡𝐸 or 𝑡𝐹. 267 

In the generation of TTRE in the Poisson process, three pseudo-random numbers were generated 268 

independently from the uniform distribution 𝑈(0, 1)  and sorted in increasing order, 𝑢1, 𝑢2, 𝑢3  in turn 269 

(𝑢𝑘 , 𝑘 = 1, 2, 3). If the scale parameter of the exponential distribution is 𝜆, the baseline hazard function is 270 

𝜆, which is always constant regardless of the time or number of recurrences. The 𝑘th TTRE of the 𝑗th subject 271 

in the 𝑖th cluster, when the starting point is not considered, is as follows:  272 

𝑇𝑖𝑗𝑘∗ =273 

{ −log (𝑢𝑘)𝜆 exp (𝛽′𝑥+𝜏𝑖)                                                              − log (𝑢𝑘) < 𝜆 exp(𝛽′𝑥 + 𝜏𝑖) 𝑤𝑖𝑗− log(𝑢𝑘)−𝜆 exp(𝛽′𝑥+𝜏𝑖)𝑤𝑖𝑗+𝜆 exp(𝛽′𝑥+𝛽𝑡𝑖𝑘+𝜏𝑖)𝑤𝑖𝑗𝜆 exp(𝛽′𝑥+𝛽𝑡𝑖𝑘+𝜏𝑖)     − log (𝑢𝑘) ⩾ 𝜆 exp(𝛽′𝑥 + 𝜏𝑖) 𝑤𝑖𝑗274 

, 275 

where 𝜏𝑖 is the random effect on the variations between clusters, 𝜏𝑖~𝑁(0, 𝜎2). As already mentioned, 𝛽𝑡𝑖𝑘 276 

is the parameter of the intervention effect on the 𝑘th recurrence of the 𝑖th cluster, and 𝑤𝑖𝑗 is the distance 277 

to switch for each subject. For simplicity, we omitted the 𝛽′𝑥 for the time-independent covariates in the 278 

simulation. The TTRE, which is used in the analysis considering the starting point, is represented by 𝑇𝑖𝑗𝑘 =279 

𝑑𝑖𝑗 + 𝑇𝑖𝑗𝑘∗ . 280 

In the generation of TTRE in the Weibull model, three pseudorandom numbers were generated 281 

independently from the uniform distribution 𝑈(0, 1), 𝑢1, 𝑢2, 𝑢3 in the order in which they are generated 282 

(𝑢𝑘 , 𝑘 = 1, 2, 3). Let the scale parameter of the Weibull distribution for each recurrence be 𝜆𝑘, and the shape 283 

parameter be 𝜈𝑘. The baseline hazard function is 𝜆𝑘𝜈𝑘𝑡𝜈𝑘−1 and it is allowed to vary with time. The 𝑘th 284 
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TTRE of the 𝑗th subject in the 𝑖th cluster, when the starting point is not considered, is as follows: 285 

𝑇𝑖𝑗𝑘∗ =286 

{( −log (𝑢𝑘)𝜆𝑘 exp (𝛽′𝑥+𝜏𝑖) )1/𝜈𝑘                                                                             − log (𝑢𝑘) < 𝜆𝑘 exp(𝛽′𝑥 + 𝜏𝑖) 𝑤𝑖𝑗 𝜈𝑘(− log(𝑢𝑘)−𝜆𝑘 exp(𝛽′𝑥+𝜏𝑖)𝑤𝑖𝑗𝜈𝑘+𝜆𝑘 exp(𝛽𝑡𝑖𝑘) exp(𝛽′𝑥+𝜏𝑖)𝑤𝑖𝑗𝜈𝑘𝜆𝑘 exp(𝛽𝑡𝑖𝑘) exp(𝛽′𝑥+𝜏𝑖) )1/𝜈𝑘    − log (𝑢𝑘) ⩾ 𝜆𝑘 exp(𝛽′𝑥 + 𝜏𝑖) 𝑤𝑖𝑗 𝜈𝑘287 

. 288 

𝜏𝑖, 𝛽𝑡𝑖𝑘, 𝑤𝑖𝑗, and 𝛽′𝑥 were explained in the previous sentence. The TTRE that is actually used for the 289 

analysis considering the starting point is: 290 

{ 𝑇𝑖𝑗𝑘 = 𝑑𝑖𝑗 + 𝑇𝑖𝑗𝑘∗               𝑘 = 1𝑇𝑖𝑗𝑘 = 𝑇𝑖𝑗𝑘−1 + 𝑇𝑖𝑗𝑘∗             𝑘 = 2, 3. 291 

The parameters are 𝜆1 = 𝜆2 = 𝜆3, 𝜈1 = 𝜈2 = 𝜈3 for the Weibull model (constant), and 𝜆1 ≠ 𝜆2 = 𝜆3, 𝜈1 ≠292 

𝜈2 = 𝜈3 for the Weibull model (change). 293 

In the actual example, 31.4% of the residents died during the trial period. Therefore, in our simulation, 294 

we considered the time-to-terminal-event (TTTE) as independent of the distance to switch and TTRE. If the 295 

generated TTTE does not exceed 𝑡𝐸 or 𝑡𝐹 and it is before the third TTRE, it is treated as mid-trial right-296 

side censoring at the occurrence of the terminal event. The scale parameter of the Weibull distribution for 297 

the terminal event is 𝜆𝑐, and the shape parameter is 𝜈𝑐. Without considering the starting point, the TTTE 298 

of the 𝑗th subject in the 𝑖h cluster, 𝐶𝑖𝑗∗ , can be expressed using the probability density function as follows: 299 

𝑓(𝑥) = 𝜈𝑐𝜆𝑐𝜈𝑐 𝑥𝜈𝑐−1 𝑒𝑥𝑝 {− ( 𝑥𝜆𝑐)𝜈𝑐} , 𝑥 > 0. 300 

The TTTE used in the actual analysis considering the starting point is expressed as 𝐶𝑖𝑗 = 𝑑𝑖𝑗 + 𝐶𝑖𝑗∗ . 301 

 302 
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Parameter settings 303 

The scale parameter for the exponential distribution in the generation of the TTRE by the Poisson process 304 

was set to 𝜆 = 0.003281. This parameter was estimated based on the TTHA up to the third of the actual 305 

example, with all starting points set to zero. 306 

The scale and shape parameters of the Weibull distribution in the generation of TTRE using the Weibull 307 

model (constant) were set to 𝜆1 = 𝜆2 = 𝜆3 = 0.004703, 𝜈1 = 𝜈2 = 𝜈3 = 1.1219. These parameters were 308 

estimated based on the TTHA, up to the third of the actual example. The starting point of the second and 309 

subsequent TTHA was the time of the previous hospitalisation. 310 

The scale and shape parameters of the Weibull distribution in the generation of the TTRE using the Weibull 311 

model (change) were set to 𝜆1 = 0.003599, 𝜆2 = 𝜆3 = 0.009910, 𝜈1 = 1.5122, 𝜈2 = 𝜈3 = 0.9108 . 312 

These parameters were estimated based on the "first TTHA" and the "second and third TTHA" of the actual 313 

example, respectively. The starting point of the second and subsequent TTHAs was the time of the occurrence 314 

of the previous hospitalisation. 315 

The scale and shape parameters of the Weibull distribution in the generation of TTTE as mid-trial right-316 

side censoring were set to 𝜆𝑐 = 0.003674 and 𝜈𝑐 = 1.7191. These parameters were estimated based on 317 

the time to death in the actual example. 318 

Two parameters were set for the true intervention effect. The first is 𝛽𝑡𝑖𝑘 = 𝛽𝑡 = −0.264, which was 319 

calculated as ln (4.3/5.6) based on the secondary outcome of the actual example, No. of hospitalisations 320 

per facility month. The second is 𝛽𝑡𝑖𝑘 = 𝛽𝑡 = 0 , a setting used in previous studies on event generation 321 
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models: HR = 1, which indicates that there is no difference in the risk of event occurrence between the control 322 

and intervention conditions. In a simple RCT situation where there is no intervention effect, both the AG and 323 

PWP-TT models have been shown to perform well, regardless of the type of event generation model. 324 

 325 

Simulation set-up 326 

For all simulations, we fixed 𝑡𝑆 = 0 at the beginning of the trial, 𝑡𝐸 = 360 at the end of the last step 327 

period, and the total sample size per simulation (total number of subjects per trial) 𝑁 = 2000. These settings 328 

were based on the fact that the actual example lasts for 12 months from the start of the trial to the end of the 329 

final step period; if one month is considered to be approximately 30 days, the trial period can be calculated 330 

as 12 × 30 = approximately 360 days, and the total number of subjects was 1700. Unless otherwise noted, 331 

the basic settings for each simulation scenario are as follows: the number of simulations is 1000, the event 332 

generation model consists of three types (Poisson process, Weibull model (constant), Weibull model 333 

(change)), the parameters of the true intervention effect are two ways (−0.264, 0), and 𝑠(= 𝑚) = 5, 𝑛𝑖 =334 

𝑛 = 𝑁/𝑚 = 400, 𝑊𝑑 = (𝑡𝐸 − 𝑡𝑆) / (𝑚 + 1) = 60, 𝜎2 = 0, 𝐸 = 1, 𝐹 = 0. The setting of 𝑠 = 𝑚 = 5 is in 335 

reference to the fact that the number of steps in the actual example is five (Fig. 1). 336 

Each simulation scenario is listed below. Scenario II applied two policies for each statistical model: (i) 337 

with stratification by clusters and (ii) without stratification by clusters. In all scenarios, except for scenario 338 

II, only (i) was applied. 339 

In Scenario I, the number of steps (clusters) varied as 𝑠(= 𝑚) = 2, 4, 5, 8, 10, 20 to investigate how the 340 
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performance of each statistical model changed as the number of steps (clusters) increased. As the number of 341 

steps changes, it becomes 𝑛 = 𝑁/𝑚 = 1000, 500, 400, 250, 200, 100, 𝑊𝑑 = 120, 72, 60, 40, 33, 17 . The 342 

results based on 𝑠(= 𝑚) = 5, 𝑛 = 400, 𝑊𝑑 = 60 in this scenario were used as a reference throughout the 343 

simulations in our study. 344 

In Scenario II, we varied the variance with respect to the random effect 𝜏𝑖, which represents the 345 

variation among clusters, as 𝜎2 = 0.25, 0.5, 1 , and investigated how the performance of each statistical 346 

model changed as the variation between clusters increased. 347 

In Scenario III, the follow-up period varied as follows, 𝐹 = 1, 2, 3, 4  to investigate how the 348 

performance of each statistical model changed as the follow-up period increased. The setting of 𝐹 is based 349 

on the follow-up period of 2.5 steps in the actual example (Fig. 1). In this scenario, the time point of the trial 350 

entry point was 𝑑𝑖𝑗 = 𝑡𝑆 + ((𝑡𝐹 − 𝑡𝑆) ∗ 𝑒)/𝐸 , and the subject was allowed to enter until the end of the 351 

follow-up period. 352 

In Scenario IV, the follow-up period was changed to 𝐹 = 1, 2, 3, 4  to investigate how the 353 

performance of each statistical model changed as the follow-up period increased. In this scenario, the time 354 

point of the trial entry point was 𝑑𝑖𝑗 = 𝑡𝑆 + ((𝑡𝐸 − 𝑡𝑆) ∗ 𝑒)/𝐸, and entry was terminated at the end of the 355 

final step period. 356 

In Scenario V, we varied the timing of the trial entry as follows, 𝐸 = 1.5, 2, 4, 6 to investigate how 357 

the performance of each statistical model changed as trial entry was concentrated at an earlier stage of the 358 

trial.  359 
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In Scenario VI, the time of trial entry varied as follows, 𝐸 = 1.5, 2, 4, 6, and the follow-up period 360 

was changed to 𝐹 = 1, 2, 3, 4, to investigate how the performance of each statistical model changed in a 361 

situation where trial entry was concentrated in an earlier stage of the trial, and there was a follow-up period. 362 

In this scenario, for convenience, we used 𝑑𝑖𝑗 = 𝑡𝑆 + ((𝑡𝐸 − 𝑡𝑆) ∗ 𝑒)/𝐸 as the time point for trial entry. 363 

 364 

Analysis of an actual example 365 

The time-independent covariates employed in the model analysis for the primary outcome in the actual 366 

example (age, sex, medical power of attorney, health directive, advance care plan/statement of choices, 367 

primary diagnosis, age-adjusted Charlson comorbidity index, and fidelity) were used for adjustment, when 368 

analysing hospitalization > 24 h repeatedly occurred with the TTRE in the actual example using each 369 

statistical model. 370 

Two policies were applied to each statistical model: (i) with stratification by clusters and (ii) without 371 

stratification by clusters. Fidelity is a per-cluster variable and was employed only with policy (ii), as it is not 372 

available for adjustment in (i). The unidirectional switch from the control condition to the intervention 373 

condition in each cluster was expressed using the intervention indicator as a time-dependent covariate. 374 

In the usual TTRE analysis, continuous risk intervals were employed. However, in reality, they are not 375 

exposed to the risk of further hospitalisation during their hospital stay. Therefore, in this study, we adopted a 376 

discrete risk interval [30]. Thus, for example, if a resident was hospitalised, subsequent exposure to the risk 377 

of new hospitalisation would be from the day of discharge. 378 



21 
 

The results of the analysis were evaluated using HR and its 95% CI and p-value. In addition, parameter 379 

estimates and standard error (SE) were evaluated for the intervention effects. 380 

 381 

Software and code 382 

All statistical analyses, including simulations, were performed using SAS, version 9.4 (SAS Institute, Cary, 383 

NC, USA). The PROC PHREG of SAS was used to analyse the TTRE. 384 

 385 

 386 

Results 387 

Simulation 388 

The results for Scenario I with 𝑠 (= 𝑚) = 5, 𝑛 = 400,  𝑊𝑑 = 60 are shown in Table 1.These results 389 

were used as a reference for all the other simulations assessed in this study, as the setting 𝑠 (= 𝑚) = 5 390 

references the fact that the number of steps in the actual example is five (Fig. 1). 391 

 392 

Table 1 Performance for the reference results throughout the simulations 393 

True           Weibull model   Weibull model 

intervention Statistical Poisson process  (constant)  (change) 

effect (βt) model Bias MSE CP   Bias MSE CP   Bias MSE CP 

-0.264 CoxPH 0.0021 0.0054 0.942  0.0016 0.0059 0.940  -0.0040 0.0035 0.947 

 AG 0.0266 0.0040 0.933  0.0567 0.0067 0.858  0.1247 0.0168 0.162 

 PWP-TT 0.0021 0.0040 0.940  0.0529 0.0065 0.864  0.0328 0.0033 0.896 

 PWP-GT 0.0380 0.0054 0.899   0.0032 0.0037 0.949   -0.0004 0.0022 0.955 
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0 CoxPH 0.0024 0.0049 0.944  0.0010 0.0054 0.946  -0.0039 0.0032 0.946 

 AG 0.0023 0.0030 0.955  0.0025 0.0032 0.948  0.0011 0.0011 0.991 

 PWP-TT 0.0024 0.0036 0.939  0.0025 0.0034 0.948  -0.0005 0.0020 0.961 

  PWP-GT 0.0021 0.0034 0.933   0.0019 0.0031 0.944   -0.0011 0.0020 0.950 

Settings: 𝑠(= 𝑚) = 5, 𝑛 = 400, 𝑊𝑑 = 60, 𝜎2 = 0, 𝐸 = 1, 𝐹 = 0. 394 

 395 

From the reference results for 𝛽𝑡 = −0.264, the MSE under the Poisson process was smaller for the AG 396 

and PWP-TT models, and slightly larger for the PWP-GT model; the CP performances of the AG and PWP-397 

TT models were similar, but the bias was much smaller for the PWP-TT model. The PWP-GT model 398 

performed very well in both the Weibull model (constant) and Weibull model (change). Under the Weibull 399 

model (change), the performance of the AG model was found to be very poor. In reference to the results for 400 

𝛽𝑡 = 0, the overall performance was higher than that of 𝛽𝑡 = −0.264, and the MSE was smaller in all the 401 

extended CoxPH models for TTRE than in the CoxPH model for TTFE only. The AG model under the 402 

Weibull model (change) tended to overestimate CP. In all event generation models, the PWP-TT and PWP-403 

GT models showed similar results. 404 

The results for Scenario I when the parameter for the true intervention effect is 𝛽𝑡 = −0.264 are shown 405 

in Table 2, and the results when 𝛽𝑡 = 0 are shown in Additional File (S.1). Regardless of the setting for 𝛽𝑡, 406 

the overall MSE increased slightly as the number of steps (clusters) increased, but this did not substantially 407 

impact on the performance comparison between the statistical models. 408 

The results for Scenario II when the parameter for the true intervention effect is 𝛽𝑡 = −0.264 are shown 409 

in Table 3, and the results when 𝛽𝑡 = 0 are shown in Additional File (S.2). Regardless of the setting of 𝛽𝑡, 410 
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the performance of policy (ii) without stratification by clusters decreased as inter-cluster variation increased. 411 

At 𝜎2 = 0.25 , the lowest variance in the setting, the decrease in performance was already apparent, 412 

especially for CP, as the performance was very poor. The reference results where policy (i) with stratification 413 

by clusters was performed in the absence of inter-cluster variation were similar to the results when (i) with 414 

stratification by clusters was performed in this scenario where inter-cluster variation was present. 415 

 416 

Table 2 Performance for scenario I with true intervention effect of 𝛽𝑡 = −0.264 417 

  Number         Weibull model  Weibull model 

Statistical of steps  Poisson process  (constant)  (change) 

model (clusters Bias MSE CP 
 

Bias MSE CP  Bias MSE CP 

CoxPH 2 <-0.0001 0.0044 0.952 
 

0.0002 0.0050 0.946 
 

-0.0033 0.0027 0.957 

 
4 0.0022 0.0049 0.954 

 
-0.0007 0.0056 0.942 

 
-0.0045 0.0034 0.948 

 
5 0.0021 0.0054 0.942 

 
0.0016 0.0059 0.940 

 
-0.0040 0.0035 0.947 

 
8 0.0019 0.0056 0.957 

 
0.0009 0.0066 0.936 

 
-0.0031 0.0036 0.944 

 
10 0.0011 0.0056 0.953 

 
0.0001 0.0065 0.940 

 
-0.0026 0.0039 0.941 

  20 0.0016 0.0060 0.944  0.0006 0.0070 0.933  -0.0030 0.0041 0.948 

AG 2 0.0267 0.0034 0.937 
 

0.0462 0.0052 0.870 
 

0.1229 0.0162 0.100 

 
4 0.0259 0.0036 0.941 

 
0.0546 0.0065 0.848 

 
0.1221 0.0162 0.157 

 
5 0.0266 0.0040 0.933 

 
0.0567 0.0067 0.858 

 
0.1247 0.0168 0.162 

 
8 0.0255 0.0041 0.943 

 
0.0563 0.0071 0.849 

 
0.1240 0.0167 0.171 

 
10 0.0251 0.0042 0.936 

 
0.0566 0.0072 0.842 

 
0.1250 0.0171 0.191 

  20 0.0259 0.0042 0.938  0.0553 0.0070 0.869  0.1237 0.0169 0.222 

PWP-TT 2 0.0006 0.0032 0.959 
 

0.0424 0.0050 0.882 
 

0.0253 0.0026 0.897 

 
4 0.0013 0.0036 0.948 

 
0.0509 0.0062 0.867 

 
0.0299 0.0032 0.892 

 
5 0.0021 0.0040 0.940 

 
0.0529 0.0065 0.864 

 
0.0328 0.0033 0.896 

 
8 0.0011 0.0041 0.938 

 
0.0522 0.0068 0.863 

 
0.0330 0.0035 0.902 

 
10 0.0016 0.0042 0.943 

 
0.0522 0.0069 0.860 

 
0.0348 0.0038 0.888 

  20 0.0020 0.0042 0.949  0.0496 0.0067 0.884  0.0334 0.0038 0.901 

PWP-GT 2 0.0393 0.0047 0.868 
 

0.0016 0.0032 0.944 
 

-0.0014 0.0019 0.950 

 
4 0.0386 0.0051 0.894 

 
0.0003 0.0037 0.945 

 
-0.0019 0.0021 0.963 

 
5 0.0380 0.0054 0.899 

 
0.0032 0.0037 0.949 

 
-0.0004 0.0022 0.955 

 
8 0.0397 0.0056 0.896 

 
0.0016 0.0043 0.934 

 
-0.0014 0.0024 0.954 

 
10 0.0376 0.0057 0.897 

 
0.0019 0.0042 0.945 

 
0.0010 0.0025 0.956 

  20 0.0363 0.0057 0.912  0.0004 0.0044 0.949  -0.0012 0.0026 0.949 

CoxPH: Cox Proportional Hazard, AG: Andersen-Gill, PWP-TT: Prentice-Williams-Peterson Total-Time, 418 
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PWP-GT: Prentice-Williams-Peterson Gap-Time, MSE: Mean square error, CP: Coverage probability 419 

 420 

The results for Scenario III, when the parameter for the true intervention effect is 𝛽𝑡 = −0.264 are shown 421 

in Table 4, and the results when 𝛽𝑡 = 0  are shown in Additional File (S.3). When 𝛽𝑡 = −0.264 , the 422 

performance of the AG and PWP-TT models under the Weibull model (constant) and the PWP-TT model 423 

under the Weibull model (change) improved as the follow-up period increased, when the trial entry was 424 

allowed until the end of the follow-up period. In particular, for CP, the performance was comparable to that 425 

of the PWP-GT model under the respective event generation model. 426 

 427 

Table 4 Performance for scenario III with true intervention effect of 𝛽𝑡 = −0.264 428 

           Weibull model  Weibull model 

Statistical 
 

Poisson process 
 

(constant) 
 

(change) 

model F Bias MSE CP  Bias MSE CP  Bias MSE CP 

CoxPH 1 0.0012 0.0047 0.953 
 

0.0005 0.0052 0.950 
 

-0.0034 0.0033 0.952 

 
2 0.0012 0.0047 0.953 

 
0.0005 0.0050 0.948 

 
-0.0038 0.0032 0.951 

 
3 0.0017 0.0048 0.946 

 
0.0010 0.0053 0.944 

 
-0.0033 0.0034 0.944 

  4 0.0010 0.0051 0.939  0.0011 0.0058 0.944  -0.0025 0.0035 0.952 

AG 1 0.0307 0.0037 0.931 
 

0.0453 0.0052 0.874 
 

0.1227 0.0161 0.119 

 
2 0.0338 0.0038 0.936 

 
0.0377 0.0046 0.916 

 
0.1206 0.0156 0.130 

 
3 0.0358 0.0039 0.928 

 
0.0320 0.0042 0.932 

 
0.1203 0.0155 0.139 

  4 0.0369 0.0041 0.929  0.0280 0.0042 0.938  0.1202 0.0155 0.133 

PWP-TT 1 0.0015 0.0034 0.947 
 

0.0406 0.0049 0.894 
 

0.0235 0.0027 0.929 

 
2 0.0013 0.0034 0.947 

 
0.0326 0.0044 0.918 

 
0.0173 0.0024 0.939 

 
3 0.0013 0.0034 0.949 

 
0.0264 0.0041 0.934 

 
0.0148 0.0023 0.949 

  4 0.0010 0.0036 0.952  0.0219 0.0042 0.935  0.0129 0.0024 0.953 

PWP-GT 1 0.0408 0.0050 0.895 
 

0.0028 0.0030 0.953 
 

-0.0002 0.0020 0.951 

 
2 0.0435 0.0051 0.878 

 
0.0011 0.0029 0.959 

 
-0.0008 0.0020 0.944 

 
3 0.0447 0.0051 0.863 

 
0.0016 0.0030 0.940 

 
0.0001 0.0019 0.950 

  4 0.0445 0.0052 0.873  0.0022 0.0030 0.937  0.0006 0.0020 0.948 

CoxPH: Cox Proportional Hazard, AG: Andersen-Gill, PWP-TT: Prentice-Williams-Peterson Total-Time, 429 
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PWP-GT: Prentice-Williams-Peterson Gap-Time, MSE: Mean square error, CP: Coverage probability 430 

 431 

The results for Scenario IV when the parameter for the true intervention effect was 𝛽𝑡 = −0.264 are 432 

shown in Table 5, and the results when 𝛽𝑡 = 0 are shown in Additional File (S.4). When 𝛽𝑡 = −0.264, the 433 

performance of the AG and PWP-TT models under the Weibull model (constant) and the PWP-TT model 434 

under the Weibull model (change), improved as the follow-up period increased, given the policy of 435 

terminating trial entry at the end of the final step period. However, none of them reached the same level of 436 

performance as the PWP-GT model in their respective event generation models. In contrast, the performance 437 

of the PWP-GT model under the Poisson process tended to decrease as the follow-up period increased. 438 

 439 

Table 5 Performance for scenario IV with true intervention effect of 𝛽𝑡 = −0.264 440 

           Weibull model  Weibull model 

Statistical 
 

Poisson process 
 

(constant) 
 

(change) 

model F Bias MSE CP  Bias MSE CP  Bias MSE CP 

CoxPH 1 0.0018 0.0047 0.945 
 

0.0009 0.0049 0.947 
 

-0.0041 0.0031 0.954 

 
2 0.0013 0.0045 0.940 

 
0.0001 0.0047 0.950 

 
-0.0042 0.0031 0.953 

 
3 0.0014 0.0045 0.943 

 
-0.0003 0.0047 0.948 

 
-0.0042 0.0031 0.953 

  4 0.0012 0.0045 0.943  -0.0004 0.0046 0.949  -0.0042 0.0031 0.953 

AG 1 0.0320 0.0037 0.919 
 

0.0475 0.0051 0.866 
 

0.1282 0.0174 0.062 

 
2 0.0350 0.0036 0.911 

 
0.0418 0.0044 0.886 

 
0.1264 0.0169 0.065 

 
3 0.0361 0.0037 0.910 

 
0.0391 0.0042 0.890 

 
0.1249 0.0165 0.068 

  4 0.0361 0.0037 0.909  0.0381 0.0041 0.899  0.1246 0.0165 0.069 

PWP-TT 1 0.0020 0.0033 0.948 
 

0.0429 0.0048 0.882 
 

0.0264 0.0026 0.908 

 
2 0.0015 0.0031 0.944 

 
0.0367 0.0042 0.907 

 
0.0233 0.0024 0.922 

 
3 0.0012 0.0031 0.943 

 
0.0339 0.0039 0.912 

 
0.0222 0.0023 0.930 

  4 0.0009 0.0031 0.944  0.0329 0.0039 0.913  0.0219 0.0023 0.930 

PWP-GT 1 0.0429 0.0050 0.876 
 

0.0028 0.0028 0.948 
 

0.0001 0.0018 0.950 

 
2 0.0470 0.0052 0.840 

 
0.0024 0.0025 0.942 

 
-0.0002 0.0017 0.946 

 
3 0.0497 0.0054 0.825 

 
0.0026 0.0023 0.945 

 
-0.0004 0.0017 0.949 

  4 0.0512 0.0055 0.810  0.0022 0.0023 0.947  -0.0004 0.0017 0.949 
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CoxPH: Cox Proportional Hazard, AG: Andersen-Gill, PWP-TT: Prentice-Williams-Peterson Total-Time, 441 

PWP-GT: Prentice-Williams-Peterson Gap-Time, MSE: Mean square error, CP: Coverage probability 442 

 443 

The results for Scenario V when the parameter for the true intervention effect is 𝛽𝑡 = −0.264 are shown 444 

in Table 6, and the results when 𝛽𝑡 = 0 are shown in Additional File (S.5). Regardless of the setting of 𝛽𝑡, 445 

there was a tendency for the overall MSE to increase as the trial entry was more concentrated at the beginning 446 

of the trial. When 𝛽𝑡 = −0.264, for the PWP-GT model under the Poisson process, the AG and PWP-TT 447 

models under the Weibull model (constant), and the PWP-TT model under the Weibull model (change), CP 448 

always performed poorly when compared to the reference results, regardless of the value for 𝐸. 449 

 450 

Table 6 Performance for scenario V with true intervention effect of 𝛽𝑡 = −0.264 451 

           Weibull model  Weibull model 

Statistical 
 

Poisson process 
 

(constant) 
 

(change) 

model E Bias MSE CP  Bias MSE CP  Bias MSE CP 

CoxPH 1.5 0.0014 0.0060 0.950  0.0009 0.0059 0.951  -0.0026 0.0043 0.948 

 
2 <0.0001 0.0073 0.951 

 
-0.0029 0.0080 0.945 

 
-0.0015 0.0058 0.948 

 
4 0.0018 0.0148 0.947 

 
-0.0079 0.0146 0.954 

 
-0.0056 0.0111 0.951 

  6 0.0028 0.0241 0.936  -0.0034 0.0215 0.951  -0.0057 0.0168 0.949 

AG 1.5 0.0265 0.0040 0.937 
 

0.0721 0.0084 0.768 
 

0.1363 0.0201 0.122 

 
2 0.0232 0.0045 0.943 

 
0.0876 0.0115 0.724 

 
0.1391 0.0214 0.213 

 
4 0.0110 0.0088 0.944 

 
0.1148 0.0203 0.713 

 
0.1437 0.0251 0.521 

  6 0.0066 0.0119 0.954  0.1274 0.0264 0.757  0.1447 0.0275 0.629 

PWP-TT 1.5 0.0014 0.0041 0.937 
 

0.0689 0.0080 0.793 
 

0.0497 0.0050 0.834 

 
2 0.0015 0.0046 0.938 

 
0.0855 0.0112 0.734 

 
0.0656 0.0073 0.780 

 
4 -0.0012 0.0095 0.938 

 
0.1139 0.0202 0.731 

 
0.0961 0.0149 0.769 

  6 -0.0021 0.0128 0.948  0.1267 0.0264 0.766  0.1061 0.0193 0.788 

PWP-GT 1.5 0.0498 0.0064 0.848 
 

0.0002 0.0034 0.957 
 

-0.0005 0.0025 0.937 

 
2 0.0603 0.0084 0.842 

 
0.0013 0.0042 0.945 

 
0.0009 0.0031 0.954 

 
4 0.0786 0.0152 0.856 

 
-0.0044 0.0080 0.944 

 
-0.0016 0.0063 0.949 

  6 0.0878 0.0212 0.870  -0.0019 0.0107 0.957  -0.0040 0.0089 0.952 
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CoxPH: Cox Proportional Hazard, AG: Andersen-Gill, PWP-TT: Prentice-Williams-Peterson Total-Time, 452 

PWP-GT: Prentice-Williams-Peterson Gap-Time, MSE: Mean square error, CP: Coverage probability 453 

 454 

The results for Scenario VI, when the parameter for the true intervention effect is 𝛽𝑡 = −0.264, are shown 455 

in Additional File (S.6), and the results when 𝛽𝑡 = 0 are shown in Additional File (S.7), respectively. The 456 

results are similar to those of Scenario V, regardless of the setting of 𝛽𝑡 or the value of 𝐹. 457 

 458 

Actual example 459 

The results summarising only the intervention indicators as time-dependent covariates are shown in Table 460 

7. The overall results, including the time-independent covariates used for adjustment, are shown in Additional 461 

File S.8. 462 

 463 

Table 7 Analysis results of actual example (intervention indicator only) 464 

Dealing with  Statistical Parameter Standard     

clusters model Estimates Error HR [95%CI] p-value 

With  CoxPH 0.045 0.142 1.046 [0.792, 1.382] 0.751 

stratification AG 0.033 0.122 1.034 [0.814, 1.314] 0.785 

by clusters PWP-TT -0.061 0.123 0.941 [0.739, 1.198] 0.621 

  PWP-GT 0.054 0.117 1.056 [0.840, 1.327] 0.641 

Without CoxPH 0.07 0.111 1.073 [0.862, 1.335] 0.528 

stratification AG 0.096 0.094 1.102 [0.915, 1.326] 0.306 

by clusters PWP-TT 0.040 0.095 1.041 [0.863, 1.254] 0.676 

  PWP-GT 0.087 0.091 1.090 [0.912, 1.304] 0.360 

CoxPH: Cox Proportional Hazard, AG: Andersen-Gill, PWP-TT: Prentice-Williams-Peterson Total-Time, 465 
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PWP-GT: Prentice-Williams-Peterson Gap-Time, HR: Hazard ratio, CI: Confidence interval 466 

 467 

The HR for the intervention indicator shows the relative risk of the intervention condition when compared 468 

to the control. Except for the PWP-TT model under policy (i) with stratification by clusters, the overall HR 469 

was slightly above 1, suggesting that the risk of events in the intervention condition may be higher than in 470 

the control, although the difference was not statistically significant. Reviewing the results of the statistical 471 

model, under policy (ii) without stratification by clusters, the HR tended to be larger, and the range of the SE 472 

and 95% CI was smaller than under policy (i) with stratification by clusters. By comparing the results across 473 

the statistical models, it was found that all extended CoxPH models for TTRE tended to have smaller SEs 474 

and 95% CIs than the CoxPH models for TTFE. 475 

The results of the covariates other than the intervention indicator, showed that the primary diagnosis of 476 

"dementia and Parkinson's disease", and the age-adjusted Charlson comorbidity index were statistically 477 

significant for all statistical models. Residents with dementia and Parkinson's disease had a lower risk of 478 

event occurrence than those without dementia and Parkinson's disease, suggesting that the risk of event 479 

occurrence may increase with the severity of comorbidities. 480 

 481 

Discussion 482 

In this study, we have conducted comparative simulations to identify the statistical model's whose 483 

performance for estimating intervention effects based on TTRE in SWCRT using an open cohort design were 484 
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superior and could effectively be applied to actual clinical trial data. 485 

The results of the simulations show that the performance under policy (ii) without stratification by clusters 486 

was worse when compared with policy (i) with stratification by clusters, in both the statistical models and 487 

settings. As SWCRT is implemented at the cluster level, the existence of cluster effects should be considered 488 

in any setting. Furthermore, even if there is no variation among the clusters, there is no difference in 489 

performance with and without stratification by clusters, so (i) with stratification by clusters should always be 490 

adopted in the estimation of intervention effects based on TTRE in SWCRT when using an open cohort 491 

design. 492 

The results of the simulations, in a situation where there is no follow-up period, and the timing of the trial 493 

entry tends to be random, showed that Poisson processes were similar to those of previous studies in settings 494 

that did not include time-dependent covariates [28]. The result that the performance of the PWP-TT model, 495 

as well as the AG model, was degraded in the Weibull model (constant) is somewhat different from those of 496 

previous studies. This is a tendency that is considered to be specific to SWCRT with an open cohort design. 497 

In real-world SWCRT, there may be situations in which a follow-up period is established, or trial entry is 498 

concentrated in the early period, due to the nature of the study objectives and target clusters. The simulation 499 

results are important because they show that the performance of the statistical models against TTRE depends 500 

not only on the true intervention effects and event generation model, but also on the trial design of SWCRT 501 

(the presence of a follow-up period and the timing of trial entry). 502 

The event generation model used in our study was hypothetical. The primary analysis methods in the 503 
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clinical trials usually need to be specified in advance in the study protocol or statistical analysis plan. If the 504 

policy is to adopt a statistical model for the primary analysis, and it needs to determine a statistical model in 505 

the early phase of trial planning, it would be desirable to adopt one that shows reasonable performance in 506 

various settings, rather than one that performs well only in a particular event generation model. In our study, 507 

through simulations based on various settings, the PWP-GT model with stratification by clusters showed the 508 

best performance in most settings and reasonable performance in other settings. Therefore, if the policy is to 509 

adopt a statistical model as the primary analysis, and this needs to be determined in the early phase of the 510 

trial planning, the PWP-GT model with stratification by clusters should be adopted. 511 

Under the Weibull model (change), the overall performance of the AG model tended to be very low when 512 

intervention effects were present, and the CP of the AG model tended to be excessive when there were no 513 

intervention effects. Considering the possibility that the actual event generation model is a Weibull model 514 

(change), it is challenging to adopt the AG model during the early phase of trial planning. 515 

The only situation in which the performance of the PWP-TT model with stratification by clusters is not 516 

inferior to that of the PWP-GT model with stratification by clusters is when there is a certain amount of 517 

follow-up period, and the timing of the trial entry tends to be random within the trial period, including the 518 

follow-up period. Therefore, in this situation, it may be acceptable to adopt the PWP-TT model with 519 

stratification by clusters during the early phase of the trial planning, instead of the PWP-GT model with 520 

stratification by clusters. In our study, the performance of the PWP-TT model was particularly good when 521 

the follow-up period was more than three steps. In addition, considering that the original trial period consisted 522 



31 
 

of six steps (𝑠 = 𝑚 = 5), it may be possible to think of it as a rough guide that "a certain amount of follow-523 

up period" as "a follow-up period that is more than half the length of the original trial period”. The results 524 

presented in Additional File (S.9) indicate that it can be assumed that the same is true for different numbers 525 

of steps (clusters). The choice of which statistical model to use depends on the nature of the intervention, the 526 

characteristics of the subjects, and the clinical interpretability of the analysis results. In our study, for the sake 527 

of comparability, we estimated only the overall effects based on the PWP model, assuming that each 528 

recurrence had a common effect. However, in an actual analysis, it is possible to estimate event-specific 529 

effects. The PWP-TT model is appropriate when one wants to know the effect of each recurrence since the 530 

start of the subject's follow-up. On the other hand, the PWP-GT model is suitable for understanding the effect 531 

of recurrence, in relation to the previous occurrence. 532 

A previous study on the CoxPH model in the context of SWCRT showed a tendency for the MSE to 533 

decrease as the number of steps (clusters) increased. However, the simulations in our study showed an 534 

opposite trend. This difference is not apparent, but it is thought to be due to the differences in the various 535 

settings during the simulation. For example, in the previous study, the true intervention effect was set to 1, 536 

whereas in our study, it was set to −0.264 or 0. 537 

There is a follow-up period in the actual example, and trial entry is concentrated early in the trial period. 538 

Therefore, based on the results of the simulations, the PWP-GT model with stratification by clusters is likely 539 

to be the most appropriate method for estimating intervention effects based on TTRE against the actual 540 

example, if the policy is to adopt a statistical model as the primary analysis, and this needs to be determined 541 
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in the early phase of trial planning. However, considering that the parameter estimates are close to zero for 542 

any of the statistical models, the PWP-TT model with stratification by clusters may also be adopted for 543 

exploratory analysis in terms of performance. The number of hospitalizations per facility-month, was 544 

evaluated as a secondary outcome in the actual example and showed an obvious decrease in the intervention 545 

condition when compared to the control, which is a substantial deviation from the results from the TTRE 546 

analysis of our study. One possible reason for this is that the analysis of the number of hospitalizations per 547 

facility-month ignores that residents are exposed to both the control and intervention conditions. The purpose 548 

of our study was to provide a different perspective to the existing evaluations. Therefore, it does not negate 549 

the conclusions of the actual example, which have previously been published. 550 

Our study had several limitations. First, all of the statistical models employed treat a terminal event before 551 

the third TTRE as a mid-trial censoring event. However, if a death occurs, for instance, in actual example, 552 

the possibility of a subsequent hospitalisation is lost. An event such as a death in such a situation is called a 553 

competing risk [31], but in our study, we did not account for terminal events as competing risks. 554 

Second, we assumed non-informative censoring for the terminal event, which was treated as mid-trial 555 

censoring. This assumes that censoring occurs independently due to causes unrelated to the TTRE. However, 556 

if, for example, repeated hospitalisations occur in an actual example, the risk of death is likely to increase. In 557 

such situations, it is possible to use an approach that considers the terminal event as informative censoring 558 

and corrects for it, but this was not applied [32, 33]. 559 

Third, the simulation in our study employed continuous risk intervals as it has been adopted in many 560 
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previous studies [19, 22, 34]. However, we believe that simulations for discontinuous risk intervals (adopted 561 

in the analysis of the data from actual example) should be considered in the future. 562 

Fourth, for simulation simplicity, we assumed that the number of clusters moving from the control 563 

condition to the intervention condition in one step was one (𝑠 = 𝑚). However, in actual example, two or 564 

three care homes are included in one cluster that transitions in one step. If the intervention effects can be 565 

assumed to be common among multiple care homes within a cluster, this is not an issue. If they cannot, they 566 

should be considered in the analysis, but we were not able to do this in our study. 567 

 568 

Conclusions 569 

The PWP-GT model with stratification by clusters showed the most reasonable performance for estimating 570 

the intervention effects based on the TTRE in SWCRT in various settings using an open cohort design. 571 
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 684 

 685 

Figure Legends 686 

Fig. 1 Schematic representation of the actual example. White cells correspond to the periods during which 687 

the residents received the standard-of-care (control condition), and grey cells correspond to periods during 688 

which the residents received new interventions (intervention condition). Each cluster 𝐶1 to 𝐶5 contains two 689 

or three facilities, and one cluster moves from the control condition to the intervention condition in Steps 1 690 

to 5. The duration for one Step (between one Step and the next) is two months, and the time period 𝑇0 to 𝑇8 691 
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is also every two months. The duration between 𝑇8 and 𝑇8.5 is one month. The start of the trial is 𝑇0, and 692 

after 𝑇6 , which is the end of the last step period, there is a follow-up period for 5 months until 𝑇8.5 693 

(equivalent to 2.5 Steps). 694 

 695 

Fig. 2 Schematic diagram of the simulation considering the follow-up period and the timing of trial 696 

entry. White cells correspond to the control condition and grey cells to the intervention condition. Cross 697 

marks show examples of the time points when the five subjects in each cluster entered the trial. 𝐹 is a 698 

coefficient that specifies the follow-up period that may be set after the end of the last step period. When 𝐹 =699 

0, there is no follow-up period, and 𝑡𝐹 = 𝑡𝐸. If 𝐹 = 𝑋(> 1), there is a follow-up period of 𝑋 step after the 700 

end of the last step period. 𝐸 is a coefficient that specifies the timing of the trial entry. If 𝐸 = 1, the subject 701 

enters the trial randomly between 𝑡𝑆 and 𝑡𝐸 or 𝑡𝐹, which reflects the open cohort design in that the subject 702 

may enter in the trial at any time. If 𝐸 is greater than 1, it reflects a situation where the entry of the trial is 703 

concentrated at an earlier stage of the trial. (a) Example of a case where 𝐹 = 3, 𝐸 = 1, and trial entry is 704 

allowed until the follow-up period. (b) Example of setting 𝐹 = 3, 𝐸 = 1 and trial entry is terminated in the 705 

final step period. (c) Example of setting 𝐹 = 0, 𝐸 = 2. (d) Example of setting 𝐹 = 3, 𝐸 = 2. 706 

 707 

Fig. 3 Visualization of the event generation models. White cells correspond to the control condition and 708 

grey cells to the intervention condition. Cross marks indicate when a subject enters the trial, filled black 709 

circles indicate relapse, and filled white circles indicate censoring. (a) Example of a Poisson process: all three 710 
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time-to-events occur at the time of trial entry. (b) Example of the Weibull model: the first time-to-event occurs 711 

at the time of trial entry, and the second and subsequent time-to-events occur at the time of the previous event. 712 

 713 

 714 

 715 

Table 3 Performance for scenario II with true intervention effect of 𝛽𝑡 = −0.264 716 

  Event            

Dealing with  generation Analysis   

clusters model method σ2 Bias MSE CP 

Stratification  Poisson CoxPH 0.25 0.0003 0.0052 0.951 

by clusters process  0.5 0.0016 0.0053 0.953 

    1 0.0013 0.0053 0.949 

  AG 0.25 0.0250 0.0036 0.943 

   0.5 0.0296 0.0040 0.933 

    1 0.0358 0.0043 0.899 

  PWP-TT 0.25 -0.0001 0.0037 0.957 

   0.5 0.0016 0.0037 0.947 

    1 0.0001 0.0036 0.951 

  PWP-GT 0.25 0.0367 0.0051 0.898 

   0.5 0.0387 0.0050 0.901 

     1 0.0358 0.0047 0.892 

 Weibull  CoxPH 0.25 0.0013 0.0058 0.952 

 model  0.5 0.0004 0.0057 0.947 

 (parameter   1 -0.0012 0.0062 0.947 

  constant) AG 0.25 0.0572 0.0069 0.844 

   0.5 0.0556 0.0067 0.831 

    1 0.0510 0.0061 0.836 

  PWP-TT 0.25 0.0531 0.0066 0.852 

   0.5 0.0512 0.0064 0.857 

    1 0.0461 0.0058 0.861 

  PWP-GT 0.25 0.0041 0.0038 0.950 
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   0.5 0.0015 0.0033 0.959 

     1 0.0008 0.0033 0.939 

 Weibull  CoxPH 0.25 -0.0031 0.0035 0.951 

 model  0.5 -0.0034 0.0036 0.943 

 (parameter   1 -0.0027 0.0038 0.942 

  change) AG 0.25 0.1237 0.0166 0.158 

   0.5 0.1196 0.0157 0.197 

    1 0.1087 0.0134 0.275 

  PWP-TT 0.25 0.0333 0.0034 0.892 

   0.5 0.0323 0.0034 0.889 

    1 0.0300 0.0033 0.886 

  PWP-GT 0.25 -0.0002 0.0022 0.952 

   0.5 -0.0006 0.0022 0.965 

      1 0.0005 0.0022 0.954 

Non-stratification  Poisson CoxPH 0.25 0.0037 0.0183 0.605 

by clusters process  0.5 0.0135 0.0535 0.369 

    1 0.0411 0.1415 0.229 

  AG 0.25 0.0362 0.0139 0.560 

   0.5 0.0451 0.0438 0.324 

    1 0.0666 0.1344 0.172 

  PWP-TT 0.25 0.0057 0.0179 0.521 

   0.5 0.0228 0.0537 0.289 

    1 0.0634 0.1262 0.180 

  PWP-GT 0.25 0.0361 0.0200 0.481 

   0.5 0.0552 0.0595 0.274 

     1 0.1067 0.1530 0.161 

 Weibull  CoxPH 0.25 0.0031 0.0196 0.595 

 model  0.5 0.0109 0.0582 0.366 

 (parameter   1 0.0373 0.1528 0.238 

  constant) AG 0.25 0.0417 0.0195 0.483 

   0.5 0.0486 0.0623 0.270 

    1 0.0720 0.1760 0.159 

  PWP-TT 0.25 0.0405 0.0194 0.482 

   0.5 0.0558 0.0567 0.286 

    1 0.0950 0.1295 0.182 

  PWP-GT 0.25 0.0085 0.0195 0.466 

   0.5 0.0264 0.0606 0.260 
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     1 0.0828 0.1525 0.168 

 Weibull  CoxPH 0.25 0.0027 0.0154 0.555 

 model  0.5 0.0156 0.0448 0.338 

 (parameter   1 0.0458 0.1129 0.217 

  change) AG 0.25 0.1227 0.0203 0.254 

   0.5 0.1216 0.0338 0.276 

    1 0.1227 0.0814 0.186 

  PWP-TT 0.25 0.0281 0.0156 0.438 

   0.5 0.0445 0.0456 0.258 

    1 0.0835 0.1011 0.179 

  PWP-GT 0.25 0.0068 0.0162 0.429 

   0.5 0.0274 0.0506 0.255 

      1 0.0845 0.1259 0.161 

CoxPH: Cox Proportional Hazard, AG: Andersen-Gill, PWP-TT: Prentice-Williams-Peterson Total-Time, 717 

PWP-GT: Prentice-Williams-Peterson Gap-Time, MSE: Mean square error, CP: Coverage probability 718 

 719 

 720 



Fig. 1 Schematic representation of the actual example



Fig. 2 Schematic diagram of the simulation considering the follow-up period and the timing of trial entry



Fig. 3 Visualization of the event generation models
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