1 Yan N, Du YM, Liu XM, Zhang, HB, Liu YH, Zhang P, Gong DP, Zhang ZF. Chemical structures, biosynthesis, bioactivities, biocatalysis and semisynthesis of tobacco cembranoids: An overview. Ind Crop Prod. 2016;83:66-80.
2 Yan N, Du YM, Liu XM, Zhang HB, Liu YH, Zhang ZF. Bioactivities and medicinal value of solanesol and its accumulation, extraction technology, and determination methods. Biomolecules. 2019;9:30-38.
3 Sui JK, Wang CK, Liu XF, Fang N, Liu YH, Wang WJ, Yan N, Zhang HB, Du YM, Liu XM, Lu TG, Zhang ZF, Zhang HB. Formation of α- and β-cembratriene-diols in tobacco (Nicotiana tabacum L.) is regulated by jasmonate-signaling components via manipulating multiple cembranoid synthetic genes. Molecules.2018;23:2511.
4 Yang B, Zhou, XF, Lin XP, Liu J, Peng Y, Yang XW, Liu YH. Cembrane diterpenes chemistry and biological properties. Curr Org Chem. 2012;16:1512-1539.
5 Aqil F, Zahin M, El Sayed KA, Ahmad I, Orabi KY, Arif JM. Antimicrobial, antioxidant, and antimutagenic activities of selected marine natural products and tobacco cembranoids. Drug Chem Toxicol. 2011;34:167-179.
6 Ishii T, Kamada T, Vairappan CS, Asian J. Three new cembranoids from the Bornean soft coral Nephthea sp. Nat Prod Res. 2016;18:415-422.
7 Zhao M, Yin J, Jiang W, Ma MS. Lei XX, Xiang Z, Dong JY, Huang KW, Yan PC. Cytotoxic and antibacterial cembranoids from a south china sea soft coral, Lobophytum sp. Mar Drugs. 2013;11:1162-1172.
8 Wang E, Wang R, DeParasis J, Loughrin J, Gan SS, Wagner G. Suppression of a P450 hydroxylase gene in plant trichome glands enhances natural-product-based aphid resistance. Nat Biotechnol. 2001;19:371-374.
9 Nacoulma AP, Megalizzi V, Pottier LR, Lorenzi MD, Thoret S, Dubois J, Vandeputte OM, Duez P, Vereecke D, Jaziri ME. Potent antiproliferative cembrenoids accumulate in tobacco upon infection with Rhodococcus fascians and trigger unusual microtubule dynamics in human glioblastoma cells. PLoS ONE. 2013;8:e77529.
10 Li G, Li H, Zhang Q, Yang M, Gu YC, Liang LF, Tang W, Guo YW. Rare cembranoids from chinese soft coral Sarcophyton ehrenbergi: Structural and stereochemical studies. J Org Chem. 2019;84:5091-5098.
11 Rodriguez JW, Rodriguez-Martinez M, Ferchmin PA, Rios-Olivares E, Wang D, Nath A, Eterovic VA. Tobacco cembranoid 4R attenuates HIV neurotoxicity by glutamate release reduction independent of viral replication and inflammation. J Neuroimmune Pharmacol. 2011;6:S56-S57.
12 Huang PC, Tseng CC, Peng BR, Hu CC, Lin NC, Chen NF, Chen JJ, Wen ZH, Wu YC, Sung PJ. Briaviodiols B-E, new anti-inflammatory hydroperoxy furan cembranoids from Briareum violaceum. Tetrahedron. 2019;75:921-927.
13 Ren J, Wang YG, Wang AG, Wu LQ, Zhang HJ, Wang WJ, Su YL, Qin HL. Cembranoids from the gum resin of boswellia carterii as potential antiulcerative colitis agents. J Nat Prod. 2015;78:2322-2331.
14 Martins AH, Hu J, Xu Z, Mu C, Alvarez P, Ford BD, El SK, Eterovic VA, Ferchmin PA, Hao J. Neuroprotective activity of (1S,2E,4R,6R,-7E,11E)-2,7,11-cembratriene-4,6-diol (4R) in vitro and in vivo in rodent models of brain ischemia. Neuroscience. 2015;291:250-259.
15 Vélezcarrasco W, Green CE, Catz P, Furimsky A, O'Loughlin K, Eterović VA, Ferchmin PA. Pharmacokinetics and metabolism of 4R-cembranoid. PLoS ONE. 2015;10:e0121540.
16 Cui H, Zhang ST, Yang HJ, J H, Wang XJ. Gene expression profile analysis of tobacco leaf trichomes. BMC Plant Biol. 2011;11:76.
17 Ennajdaoui H, Vachon G, Giacalone C, Besse I, Sallaud C, Herzog M, Tissier A. Trichome specific expression of the tobacco cembratrien-ol synthase genes is controlled by both activating and repressing cis-regions. Plant Mol Biol. 2010;73:673-685.
18 Guo ZH, Wanger GJ. Biosynthesis of cembratrienols in cell-free extracts from trichomes of Nicotiana tabacum. Plant Sci.1995;110:1-10.
19 Wang EM, Wagner GJ. Elucidation of the functions of genes central to diterpene metabolism in tobacco trichomes using posttranscriptional gene silencing. Planta. 2003;216:686-691.
20 Robers DL, Rowland RL. Macrocyclic diterpenes α and β-4,8,13-duvatriene-1,3-diols from tobacoo. J Org Chem. 1962;27:398-392.
21 Rohmer M, Knani M, Simonin P. Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J. 1993;295:517.
22 Lange BM, Rujan T, Martin W, Croteau R. Isoprenoid biosynthesis: the evolution of two ancient and distinct pathways across genomes. Proc Natl Acad Sci. USA 2000;97:13172-13177.
23 Eva V, Diana C, Wilhelm G. Structure and dynamics of the isoprenoid pathway network. Mol Plant. 2012;5:318-333.
24 Vranova E, Coman D, Gruissem W. Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Annu Rev Plant Biol. 2013;64:663-700.
25 Fang N, Wang CK, Liu XF, Zhao X, Liu YH, Liu XM, Du YM, Zhang ZF, Zhang HB. De novo synthesis of astaxanthin: from organisms to genes. Trends Food Sci Tech. 2019;92:162-171.
26 Menetrez ML, SpurrJr HW, Danehower DH, Lawson DR. Influence of tobacco leaf surface chemicals on germination of Peronospora tabacina adam sporangia. J Chem Ecol. 1990;16: 1565-1576.
27 Patrick S, Ilke U, Sven K, Bernhard L, Ville RIK, Thomas B. Exploring the catalytic cascade of cembranoid biosynthesis by combination of genetic engineering and molecular simulations. Comput Struct Biotec. 2020;18:1819-1829.
28 Yang Q, Wang J, Zhang P, Xie SN, Yuan XL, Hou XD, Yan N, Fang YD, Du YM. In vitro and in vivo antifungal activity and preliminary mechanism of cembratrien-diols against Botrytis cinerea. Ind Crop Prod. 2020;154:112745.
29 Mischko W, Hirte M, Roehrer S, Engelhardt H, Mehlmer N, Minceva M, Bruck T. Modular biomanufacturing for a sustainable production of terpenoid-based insect deterrents. Green Chem. 2018;20:2637-2650.
30 Ajikumar PK, Xiao WH, Tyo KEJ, Wang Y, Simeon F, Leonard E, Mucha O, Phon TH, Pfeifer B, Stephanopoulos G. Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli. Science. 2010;330:70-74.
31 Chang PC, Yu Y, Wang Y, Li C. Combinatorial regulation strategies for efficient synthesis of terpenoids in Saccharomyces cerevisiae. Chem Ind Eng Pro. 2019;38:598-605.
32 Jan M, Michael B. Metabolic engineering of microorganisms for the synthesis of plant natural products. J Biotechnol. 2013;163:166-178.
33 Huang BB, Guo J, Yi B, Yu XJ, Sun LN, Chen WS. Heterologous production of secondary metabolites as pharmaceuticals in Saccharomyces cerevisiae. Biotechnol Lett. 2008;30:1121-1137.
34 Emmanouil T, Nickolas P, Filippos V. Metabolic engineering of the complete pathway leading to heterologous biosynthesis of various flavonoids and stilbenoids in Saccharomyces cerevisiae. Metab Eng. 2009;11:355-366.
35 Christine Nicole S S, Mattheos K, Gregory S. Optimization of a heterologous pathway for the production of flavonoids from glucose. Metab Eng. 2011;13:392-400.
36 Frank K, Jules B, Barbara C, Adele H, Robert DH, Dirk B, Antonius J A van M, Jack TP, Jean-Marc D. De novo production of the flavonoid naringenin in engineered Saccharomyces cerevisiae. Microb Cell Fact. 2012;11:578-587.
37 Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K, Fisher K, McPhee D, Leavell MD, Tai A, Main A, Eng D, Polichuk DR, Teoh KH, Reed DW, Treynor T, Lenihan J, Fleck M, Bajad S, Dang G, Dengrove D, Diola D, Dorin G, Ellens KW, Fickes S, Galazzo J, Gaucher SP, Geistlinger T, Henry R, Hepp M, Horning T, Iqbal T, Jiang H, Kizer L, Lieu B, Melis D, Moss N, Regentin R, Secrest S, Tsuruta H, Vazquez R, Westblade LF, Xu L, Yu M, Zhang Y, Zhao L, Lievense J, Covello PS, Keasling JD, Reiling KK, Renninger NS, Newman JD. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature. 2013;496:528-532.
38 Dai ZB, Liu Y, Huang LQ, Zhang XL. Production of miltiradiene by metabolically engineered Saccharomyces cerevisiae. Biotechnol Bioeng. 2012;109:2845-2853.
39 Zhou YJJ, Gao W, Rong QX, Jin GJ, Chu HY, Liu WJ, Yang W, Zhu ZW, Li GH, Zhu GF, Huang LQ, Zhao ZBK. Modular pathway engineering of diterpenoid synthases and the mevalonic acid pathway for miltiradiene production. J Am Chem Soc. 2012;134:3234-3241.
40 Sydor T, Schaffer S, Boles E. Considerable increase in resveratrol production by recombinant industrial yeast strains with use of rich medium. Appl Environ Microb. 2010;76:3361-3363.
41 Dai ZB, Liu Y, Zhang XA, Shi MY, Wang BB, Wang D, Huang LQ, Zhang XL. Metabolic engineering of Saccharomyces cerevisiae for production of ginsenosides. Metab Eng. 2013;20:146-156.
42 Su P, Tong YR, Cheng QQ, Hu YT, Zhang M, Yang J, Teng ZQ, Gao W, Huang LQ. Functional characterization of entcopalyl diphosphate synthase, kaurene synthase and kaurene oxidase in the Salvia miltiorrhiza gibberellin biosynthetic pathway. Sci. Rep-UK 2016;6:23057.
43 Dai ZB, Wang BB, Liu Y, Shi MY, Wang D, Zhang XN, Liu T, Huang L, Zhang XL. Producing aglycons of ginsenosides in bakers’ yeast. Sci. Rep-UK 2014;4:3698.
44 Hu TY, Zhou JW, Tong YR, Su P, Li XL, Liu Y, Liu N, Wu XY, Zhang YF, Wang JD, Gao LH, Tu LC, Lu Y, Jiang ZQ, Zhou YJ, Gao W, Huang LQ. Engineering chimeric diterpene synthases and isoprenoid biosynthetic pathways enables high-production of miltiradiene in yeast. Metab Eng. 2020;60:87-96.
45 Vandermies M, Patrick F. Bioreactor-scale strategies for the production of recombinant protein in the yeast Yarrowia lipolytica. Microorganisms. 2019;7:40.