Abdolvahabi, Z., Nourbakhsh, M., Hosseinkhani, S., Hesari, Z., Alipour, M., Jafarzadeh, M., et al. (2019). MicroRNA-590-3P suppresses cell survival and triggers breast cancer cell apoptosis via targeting sirtuin-1 and deacetylation of p53. J Cell Biochem. 120, 9356-9368. doi: 10.1002/jcb.28211
Azeh, I., Gerber, J., Wellmer, A., Wellhausen, M., Koenig, B., Eiffert, H., et al. (2002). Protein synthesis inhibiting clindamycin improves outcome in a mouse model of Staphylococcus aureus sepsis compared with the cell wall active ceftriaxone. Crit Care Med. 30, 1560-1564. doi: 10.1097/00003246-200207000-00027
Benz, F., Roy, S., Trautwein, C., Roderburg, C. and Luedde, T. (2016). Circulating MicroRNAs as Biomarkers for Sepsis. Int J Mol Sci. 17, doi: 10.3390/ijms17010078
Cao, X., Zhang, C., Zhang, X., Chen, Y. and Zhang, H. (2019). MiR-145 negatively regulates TGFBR2 signaling responsible for sepsis-induced acute lung injury. Biomed Pharmacother. 111, 852-858. doi: 10.1016/j.biopha.2018.12.138
Chang, Y. C., Yu, Y. L., Wang, N. and Xu, Y. H. (2001). [Cloning and characterization of syap1, a down regulated gene in human hepatocellular carcinoma]. Shi Yan Sheng Wu Xue Bao. 34, 319-322.
de Pablo, R., Monserrat, J., Reyes, E., Diaz, D., Rodriguez-Zapata, M., la Hera, A., et al. (2012). Sepsis-induced acute respiratory distress syndrome with fatal outcome is associated to increased serum transforming growth factor beta-1 levels. Eur J Intern Med. 23, 358-362. doi: 10.1016/j.ejim.2011.10.001
Essandoh, K., Yang, L., Wang, X., Huang, W., Qin, D., Hao, J., et al. (2015). Blockade of exosome generation with GW4869 dampens the sepsis-induced inflammation and cardiac dysfunction. Biochim Biophys Acta. 1852, 2362-2371. doi: 10.1016/j.bbadis.2015.08.010
Fernando, S. M., Rochwerg, B. and Seely, A. J. E. (2018). Clinical implications of the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). CMAJ. 190, E1058-E1059. doi: 10.1503/cmaj.170149
Gotts, J. E. and Matthay, M. A. (2016). Sepsis: pathophysiology and clinical management. BMJ. 353, i1585. doi: 10.1136/bmj.i1585
Jude, B., Tissier, F., Dubourg, A., Droguet, M., Castel, T., Leon, K., et al. (2020). TGF-beta Pathway Inhibition Protectsthe Diaphragm From Sepsis-Induced Wasting and Weakness in Rat. Shock. 2020 Jun;53(6):772-778. doi: 10.1097/SHK.0000000000001393
Kingsley, S. M. K. and Bhat, B. V. (2017). Role of microRNAs in sepsis. Inflamm Res. 66, 553-569. doi: 10.1007/s00011-017-1031-9
Kloss, C. C., Lee, J., Zhang, A., Chen, F., Melenhorst, J. J., Lacey, S. F., et al. (2018). Dominant-Negative TGF-beta Receptor Enhances PSMA-Targeted Human CAR T Cell Proliferation And Augments Prostate Cancer Eradication. Mol Ther. 26, 1855-1866. doi: 10.1016/j.ymthe.2018.05.003
Kohler, J., Maletzki, C., Koczan, D., Frank, M., Trepesch, C., Revenko, A. S., et al. (2020). The contact system proteases play disparate roles in streptococcal sepsis. Haematologica. 2020 May;105(5):1424-1435. doi:
10.3324/haematol.2019.223545.
Liu, J., Shi, K., Chen, M., Xu, L., Hong, J., Hu, B., et al. (2015). Elevated miR-155 expression induces immunosuppression via CD39(+) regulatory T-cells in sepsis patient. Int J Infect Dis. 40, 135-141. doi: 10.1016/j.ijid.2015.09.016
Liu, Y., Guan, H., Zhang, J. L., Zheng, Z., Wang, H. T., Tao, K., et al. (2018). Acute downregulation of miR-199a attenuates sepsis-induced acute lung injury by targeting SIRT1. Am J Physiol Cell Physiol. 314, C449-C455. doi: 10.1152/ajpcell.00173.2017
Ludwig, K. R. and Hummon, A. B. (2017). Mass spectrometry for the discovery of biomarkers of sepsis. Mol Biosyst. 13, 648-664. doi: 10.1039/c6mb00656f
Ma, J., Li, Y. T., Zhang, S. X., Fu, S. Z. and Ye, X. Z. (2019). MiR-590-3p Attenuates Acute Kidney Injury by Inhibiting Tumor Necrosis Factor Receptor-Associated Factor 6 in Septic Mice. Inflammation. 42, 637-649. doi: 10.1007/s10753-018-0921-5
Molinaro, R., Pasto, A., Corbo, C., Taraballi, F., Giordano, F., Martinez, J. O., et al. (2019). Macrophage-derived nanovesicles exert intrinsic anti-inflammatory properties and prolong survival in sepsis through a direct interaction with macrophages. Nanoscale. 11, 13576-13586. doi: 10.1039/c9nr04253a
Patel, A., Joseph, J., Periasamy, H. and Mokale, S. (2018). Azithromycin in Combination with Ceftriaxone Reduces Systemic Inflammation and Provides Survival Benefit in a Murine Model of Polymicrobial Sepsis. Antimicrob Agents Chemother. 62, doi: 10.1128/AAC.00752-18
Rong, Y. D., Bian, A. L., Hu, H. Y., Ma, Y. and Zhou, X. Z. (2018). Study on relationship between elderly sarcopenia and inflammatory cytokine IL-6, anti-inflammatory cytokine IL-10. BMC Geriatr. 18, 308. doi: 10.1186/s12877-018-1007-9
Rupaimoole, R. and Slack, F. J. (2017). MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 16, 203-222. doi: 10.1038/nrd.2016.246
Salem, M., O'Brien, J. A., Bernaudo, S., Shawer, H., Ye, G., Brkic, J., et al. (2018). miR-590-3p Promotes Ovarian Cancer Growth and Metastasis via a Novel FOXA2-Versican Pathway. Cancer Res. 78, 4175-4190. doi: 10.1158/0008-5472.CAN-17-3014
Schmitt, D., Funk, N., Blum, R., Asan, E., Andersen, L., Rulicke, T., et al. (2016). Initial characterization of a Syap1 knock-out mouse and distribution of Syap1 in mouse brain and cultured motoneurons. Histochem Cell Biol. 146, 489-512. doi: 10.1007/s00418-016-1457-0
Souza, C. O., Peracoli, M. T., Weel, I. C., Bannwart, C. F., Romao, M., Nakaira-Takahagi, E., et al. (2012). Hepatoprotective and anti-inflammatory effects of silibinin on experimental preeclampsia induced by L-NAME in rats. Life Sci. 91, 159-165. doi: 10.1016/j.lfs.2012.06.036
van Beek, J. H., de Moor, M. H., de Geus, E. J., Lubke, G. H., Vink, J. M., Willemsen, G., et al. (2013). The genetic architecture of liver enzyme levels: GGT, ALT and AST. Behav Genet. 43, 329-339. doi: 10.1007/s10519-013-9593-y
van der Poll, T., van de Veerdonk, F. L., Scicluna, B. P. and Netea, M. G. (2017). The immunopathology of sepsis and potential therapeutic targets. Nat Rev Immunol. 17, 407-420. doi: 10.1038/nri.2017.36
Wang, H., Bei, Y., Shen, S., Huang, P., Shi, J., Zhang, J., et al. (2016). miR-21-3p controls sepsis-associated cardiac dysfunction via regulating SORBS2. J Mol Cell Cardiol. 94, 43-53. doi: 10.1016/j.yjmcc.2016.03.014
Wang, H. F., Li, Y., Wang, Y. Q., Li, H. J. and Dou, L. (2019). MicroRNA-494-3p alleviates inflammatory response in sepsis by targeting TLR6. Eur Rev Med Pharmacol Sci. 23, 2971-2977. doi: 10.26355/eurrev_201904_17578
Wrighton, K. H., Lin, X. and Feng, X. H. (2009). Phospho-control of TGF-beta superfamily signaling. Cell Res. 19, 8-20. doi: 10.1038/cr.2008.327
Yuan, F. H., Chen, Y. L., Zhao, Y., Liu, Z. M., Nan, C. C., Zheng, B. L., et al. (2019). microRNA-30a inhibits the liver cell proliferation and promotes cell apoptosis through the JAK/STAT signaling pathway by targeting SOCS-1 in rats with sepsis. J Cell Physiol. 234, 17839-17853. doi: 10.1002/jcp.28410
Zhang, C., Li, J., Qiu, X., Chen, Y. and Zhang, X. (2019). SUMO protease SENP1 acts as a ceRNA for TGFBR2 and thus activates TGFBR2/Smad signaling responsible for LPS-induced sepsis. Biomed Pharmacother. 112, 108620. doi: 10.1016/j.biopha.2019.108620