[1] MirHashemi SM, Amadeh A, Khodabakhshi F. Effects of SiC nanoparticles on the dissimilar friction stir weldability of low-density polyethylene (LDPE) and AA7075 aluminum alloy. J Mater Res Technol 2021;13:449-462. https://doi.org/10.1016/j.jmrt.2021.04.094.
[2] Yu G, Chen X, Wu Z. Mechanical performance optimization and microstructure analysis of similar thin AA6061-T6 sheets produced by swept friction stir spot welding. Int J Adv Manuf Technol 2021. https://doi.org/10.1007/s00170-021-07387-7.
[3] Paidar M, Vignesh RV, Moharrami A, Ojo OO, Jafari A, Sadreddini S. Development and characterization of dissimilar joint between AA2024-T3 and AA6061-T6 by modified friction stir clinching process. Vacuum. 2020;176:109298. https://doi.org/10.1016/j.vacuum.2020.109298.
[4] Zhou L, Xia Y, Shen Y, Haselhuhn AS, Wegner DM, Li Y, et al. Comparative study on resistance and displacement based adaptive output tracking control strategies for resistance spot welding. J Manuf Processes 2021;63:98-108. https://doi.org/10.1016/j.jmapro.2020.03.061.
[5] Ferreira AC, Campanelli LC, Suhuddin UFH, de Alcantara NG, dos Santos JF. Investigation of internal defects and premature fracture of dissimilar refill friction stir spot welds of AA5754 and AA6061. Int J Adv Manuf Technol 2020;106:3523-3531. https://doi.org/10.1007/s00170-019-04819-3.
[6] Zhang B, Chen X, Pan K, Yang C. J-integral based correlation evaluation between microstructure and mechanical strength for FSSW joints made of automotive aluminum alloys. J Manuf Processes 2019;44:62-71. https://doi.org/10.1016/j.jmapro.2019.05.039.
[7] Hu S, Haselhuhn AS, Ma Y, Li Y, Carlson BE, Lin Z. Influencing mechanism of inherent aluminum oxide film on coach peel performance of baked Al-Steel RSW. Mater Des 2021;197:109250. https://doi.org/10.1016/j.matdes.2020.109250.
[8] Lu Y, Sage DD, Fink C, Zhang W. Dissimilar metal joining of aluminium to zinc-coated steel by ultrasonic plus resistance spot welding–microstructure and mechanical properties. Sci Technol Weld Joi 2020;25:218-227. https://doi.org/10.1080/13621718.2019.1667051.
[9] Li Z, Gao S, Ji S, Yue Y, Chai P. Effect of rotational speed on microstructure and mechanical properties of refill friction stir spot welded 2024 Al alloy. J Mater Eng Perform 2016;25:1673-1682. https://doi.org/10.1007/s11665-016-1999-2.
[10] Zou Y, Li W, Chu Q, Shen Z, Wang F, Tang H, et al. The impact of macro/microstructure features on the mechanical properties of refill friction stir spot-welded joints of AA2219 alloy with a large thickness ratio. Int J Adv Manuf Technol 2021;112:3093-3103. https://doi.org/10.1007/s00170-020-06504-2.
[11] Zlatanovic DL, Balos S, Bergmann JP, Kohler T, Gratzel M, Sidjanin L, et al. An experimental study on lap joining of multiple sheets of aluminium alloy (AA 5754) using friction stir spot welding. Int J Adv Manuf Technol 2020;107:3093-3107. https://doi.org/10.1007/s00170-020-05214-z.
[12] Wang X, Morisada Y, Fujii H. High-strength Fe/Al dissimilar joint with uniform nanometer-sized intermetallic compound layer and mechanical interlock formed by adjustable probes during double-sided friction stir spot welding. Mater Sci Eng, A 2021;809:141005. https://doi.org/10.1016/j.msea.2021.141005.
[13] Zlatanovic DL, Balos S, Bergmann JP, Rasche S, Zavasnik J, Panchal V, et al. In-depth microscopic characterisation of the weld faying interface revealing stress-induced metallurgical transformations during friction stir spot welding. Int J Mach Tools Manuf 2021;164:103716. https://doi.org/10.1016/j.ijmachtools.2021.103716.
[14] Li M, Zhang C, Wang D, Zhou L, Wellmann D, Tian Y. Friction stir spot welding of aluminum and copper: a review. Materials 2020;13:156. https://doi.org/10.3390/ma13010156.
[15] Cao JY, Zhang CC, Xing YF, Wang M. Pin plunging reinforced refill friction stir spot welding of Alclad 2219 to 7075 alloy. J Mater Process Technol 2020;284:116760. https://doi.org/10.1016/j.jmatprotec.2020.116760.
[16] Mehrez S, Paidar M, Cooke K, Vignesh RV, Ojo OO, Babaei B. A comparative study on weld characteristics of AA5083-H112 to AA6061-T6 sheets produced by MFSC and FSSW processes. Vacuum. 2021;190:110298. https://doi.org/10.1016/j.vacuum.2021.110298.
[17] Zhang HF, Zhou L, Li GH, Tang YT, Li WL, Wang R. Prediction and validation of temperature distribution and material flow during refill friction stir spot welding of AZ91D magnesium alloy. Sci Technol Weld Joi 2021;26:153-160. https://doi.org/10.1080/13621718.2020.1864864.
[18] Zhang C, Cao J, Shirzadi AA. Refill Friction Stir Spot Welding (Refill FSSW) of magnesium lithium alloys: effects of air and argon cooling. Sci Technol Weld Joi 2021;45:17784-17804. https://doi.org/10.1080/13621718.2021.1884801.
[19] Yang X, Feng W, Li W, Xu Y, Chu Q, Ma T, et al. Numerical modelling and experimental investigation of thermal and material flow in probeless friction stir spot welding process of Al 2198-T8. Sci Technol Weld Joi 2018;23:704-714. https://doi.org/10.1080/13621718.2018.1469832.
[20] Yang XW, Fend WY, Li WY, Dong XR, Xu YX, Chu Q, et al. Microstructure and properties of probeless friction stir spot welding of AZ31 magnesium alloy joints. T NONFERR METAL SOC 2019;29:2300-2309. https://doi.org/10.1016/s1003-6326(19)65136-8.
[21] Chu Q, Li WY, Yang XW, Shen JJ, Vairis A, Feng WY, et al. Microstructure and mechanical optimization of probeless friction stir spot welded joint of an Al-Li alloy. J Mater Sci Technol 2018;34:1739-1746. https://doi.org/10.1016/j.jmst.2018.03.009.
[22] Li WY, Chu Q, Yang XW, Shen JJ, Vairis A, Wang WB. Microstructure and morphology evolution of probeless friction stir spot welded joints of aluminum alloy. J Mater Process Technol 2018;252:69-80. https://doi.org/10.1016/j.jmatprotec.2017.09.003.
[23] Yazdi SR, Beidokhti B, Haddad-Sabzevar M. Pinless tool for FSSW of AA 6061-T6 aluminum alloy. J Mater Process Technol 2019;267:44-51. https://doi.org/10.1016/j.jmatprotec.2018.12.005.
[24] Chu Q, Yang XW, Li WY, Lu T, Zhang Y, Vairis A, et al. Impact of surface state in probeless friction stir spot welding of an Al-Li alloy. Sci Technol Weld Joi 2019;24:200-208. https://doi.org/10.1080/13621718.2018.1517966.
[25] Chu X, Yin M, Gao J, Wang X, Wang Y. Effects of shoulder geometry on microstructures and mechanical properties of probeless friction stir spot welded aluminum 7075-T651 sheets. Metals 2020;10:1605. https://doi.org/10.3390/met10121605.
[26] Atak A. Impact of pinless stirring tools with different shoulder profile designs on friction stir spot welded joints. J Mech Sci Technol 2020;3735–3743. https://doi.org/10.1007/s12206-020-0825-9.
[27] Samal P, Vundavilli PR, Meher A, Mahapatra MM. Recent progress in aluminum metal matrix composites: A review on processing, mechanical and wear properties. J Manuf Processes 2020;59:131-152. https://doi.org/10.1016/j.jmapro.2020.09.010.
[28] Metallic materials–Tensile testing–Part 1: Method of test at room temperature, in, Standards Press of China, Beijing, 2010.
[29] Bakavos D, Chen Y, Babout L, Prangnell P. Material Interactions in a Novel Pinless Tool Approach to Friction Stir Spot Welding Thin Aluminum Sheet. Metall Mater Trans A 2011;42:1266-1282. https://doi.org/10.1007/s11661-010-0514-x.
[30] Peace GS, Taguchi methods, Addison Wesley Publishing Company, New York, 1993.
[31] Suresh S, Venkatesan K, Natarajan E, Rajesh S. Performance analysis of nano silicon carbide reinforced swept friction stir spot weld joint in AA6061-T6 alloy. Silicon 2021;13:3399-3412. https://doi.org/10.1007/s12633-020-00751-4.
[32] Yang X, Fend W, Li W, Dong X, Xu Y, Chu Q, et al. Microstructure and properties of probeless friction stir spot welding of AZ31 magnesium alloy joints. T NONFERR METAL SOC 2019;29:2300-2309. https://doi.org/10.1016/s1003-6326(19)65136-8.