[1] R.T. Annamalai, X. Hong, N.G. Schott, G. Tiruchinapally, B. Levi, J.P. Stegemann, Injectable osteogenic microtissues containing mesenchymal stromal cells conformally fill and repair critical-size defects, Biomaterials 208 (2019) 32-44.
[2] E.H. Schemitsch, Size matters: defining critical in bone defect size!, Journal of Orthopaedic Trauma 31 (2017) S20-S22.
[3] A.M. McDermott, S. Herberg, D.E. Mason, J.M. Collins, H.B. Pearson, J.H. Dawahare, R. Tang, A.N. Patwa, M.W. Grinstaff, D.J. Kelly, Recapitulating bone development through engineered mesenchymal condensations and mechanical cues for tissue regeneration, Science translational medicine 11(495) (2019).
[4] C. Bosch, B. Melsen, K. Vargervik, Importance of the critical-size bone defect in testing bone-regenerating materials, The Journal of craniofacial surgery 9(4) (1998) 310-316.
[5] J.P. Schmitz, J.O. Hollinger, The critical size defect as an experimental model for craniomandibulofacial nonunions, Clinical orthopaedics and related research (205) (1986) 299-308.
[6] A. Hayrapetyan, J.A. Jansen, J.J. van den Beucken, Signaling pathways involved in osteogenesis and their application for bone regenerative medicine, Tissue Engineering Part B: Reviews 21(1) (2014) 75-87.
[7] J. Sherwood, D. Monkhouse, C. Gaylo, Complex three-dimensional composite scaffold resistant to delimination, Google Patents, 2003.
[8] A. Duconseille, T. Astruc, N. Quintana, F. Meersman, V. Sante-Lhoutellier, Gelatin structure and composition linked to hard capsule dissolution: A review, Food Hydrocolloids 43 (2015) 360-376.
[9] H.B. Tvl, M. Vidyavathi, K. Kavitha, T. Sastry, Preparation and evaluation of ciprofloxacin loaded chitosan-gelatin composite films for wound healing activity, International Journal of Drug Delivery 2(2) (2010).
[10] Z. Bagher, Z. Atoufi, R. Alizadeh, M. Farhadi, P. Zarrintaj, L. Moroni, M. Setayeshmehr, A. Komeili, S.K. Kamrava, Conductive hydrogel based on chitosan-aniline pentamer/gelatin/agarose significantly promoted motor neuron-like cells differentiation of human olfactory ecto-mesenchymal stem cells, Materials Science and Engineering: C 101 (2019) 243-253.
[11] K. Maji, S. Dasgupta, K. Pramanik, A. Bissoyi, Preparation and evaluation of gelatin-chitosan-nanobioglass 3D porous scaffold for bone tissue engineering, International journal of biomaterials 2016 (2016).
[12] L.J.P. Córdoba, P.J. Sobral, Physical and antioxidant properties of films based on gelatin, gelatin-chitosan or gelatin-sodium caseinate blends loaded with nanoemulsified active compounds, Journal of Food Engineering 213 (2017) 47-53.
[13] Y. Tang, Y. Zhou, X. Lan, D. Huang, T. Luo, J. Ji, Z. Mafang, X. Miao, H. Wang, W. Wang, Electrospun gelatin nanofibers encapsulated with peppermint and chamomile essential oils as potential edible packaging, Journal of agricultural and food chemistry 67(8) (2019) 2227-2234.
[14] S. Farzamfar, M. Naseri-Nosar, H. Sahrapeyma, A. Ehterami, A. Goodarzi, M. Rahmati, G. Ahmadi Lakalayeh, S. Ghorbani, A. Vaez, M. Salehi, Tetracycline hydrochloride-containing poly (ε-caprolactone)/poly lactic acid scaffold for bone tissue engineering application: in vitro and in vivo study, International Journal of Polymeric Materials and Polymeric Biomaterials 68(8) (2019) 472-479.
[15] J.C. Middleton, A.J. Tipton, Synthetic biodegradable polymers as orthopedic devices, Biomaterials 21, (2000).
[16] D. Gupta, J. Venugopal, S. Mitra, V.G. Dev, S. Ramakrishna, Nanostructured biocomposite substrates by electrospinning and electrospraying for the mineralization of osteoblasts, Biomaterials 30(11) (2009) 2085-2094.
[17] R. Akbarzadeh, A.M. Yousefi, Effects of processing parameters in thermally induced phase separation technique on porous architecture of scaffolds for bone tissue engineering, Journal of biomedical materials research Part B: applied biomaterials 102(6) (2014) 1304-1315.
[18] K. Ren, Y. Wang, T. Sun, W. Yue, H. Zhang, Electrospun PCL/gelatin composite nanofiber structures for effective guided bone regeneration membranes, Materials Science and Engineering: C 78 (2017) 324-332.
[19] Z. Zhao, J. Zheng, M. Wang, H. Zhang, C.C. Han, High performance ultrafiltration membrane based on modified chitosan coating and electrospun nanofibrous PVDF scaffolds, Journal of membrane science 394 (2012) 209-217.
[20] I. Armentano, M. Dottori, E. Fortunati, S. Mattioli, J. Kenny, Biodegradable polymer matrix nanocomposites for tissue engineering: a review, Polymer degradation and stability 95(11) (2010) 2126-2146.
[21] E. Joussein, S. Petit, J. Churchman, B. Theng, D. Righi, B. Delvaux, Halloysite clay minerals—a review, Clay minerals 40(4) (2005) 383-426.
[22] G. Nitya, G.T. Nair, U. Mony, K.P. Chennazhi, S.V. Nair, In vitro evaluation of electrospun PCL/nanoclay composite scaffold for bone tissue engineering, Journal of Materials Science: Materials in Medicine 23(7) (2012) 1749-1761.
[23] V. Vergaro, E. Abdullayev, Y.M. Lvov, A. Zeitoun, R. Cingolani, R. Rinaldi, S. Leporatti, Cytocompatibility and uptake of halloysite clay nanotubes, Biomacromolecules 11(3) (2010) 820-826.
[24] V. Vergaro, E. Abdullayev, A. Zeitoun, G. Giovinazzo, A. Santino, R. Cingolani, Y.M. Lvov, S. Leporatti, Halloysite clay nanotubes: characterization, biocompatibility and use as drug carriers, Journal of Microencapsulation 25 (2008) 376.
[25] M. Gharagozloo, Z. Khoshdel, Z. Amirghofran, The effect of an iron (III) chelator, silybin, on the proliferation and cell cycle of Jurkat cells: a comparison with desferrioxamine, European Journal of Pharmacology 589(1-3) (2008) 1-7.
[26] M. Borsari, C. Gabbi, F. Ghelfi, R. Grandi, M. Saladini, S. Severi, F. Borella, Silybin, a new iron-chelating agent, Journal of inorganic biochemistry 85(2-3) (2001) 123-129.
[27] V. Křen, D. Walterová, Silybin and silymarin-new effects and applications, Biomed papers 149(1) (2005) 29-41.
[28] H. Semyari, M. Salehi, F. Taleghani, A. Ehterami, F. Bastami, T. Jalayer, H. Semyari, M. Hamed Nabavi, H. Semyari, Fabrication and characterization of collagen–hydroxyapatite-based composite scaffolds containing doxycycline via freeze-casting method for bone tissue engineering, Journal of biomaterials applications 33(4) (2018) 501-513.
[29] S. Naghieh, M. Badrossamay, E. Foroozmehr, M. Kharaziha, Combination of PLA micro-fibers and PCL-gelatin nano-fibers for development of bone tissue engineering scaffolds, Int. J. Swarm Intell. Evol. Comput 6(1) (2017) 1-4.
[30] T. Suchý, M. Šupová, M. Bartoš, R. Sedláček, M. Piola, M. Soncini, G.B. Fiore, P. Sauerová, M.H. Kalbáčová, Dry versus hydrated collagen scaffolds: are dry states representative of hydrated states?, Journal of Materials Science: Materials in Medicine 29(2) (2018) 20.
[31] M. Ranjbar-Mohammadi, S.H. Bahrami, Development of nanofibrous scaffolds containing gum tragacanth/poly (ε-caprolactone) for application as skin scaffolds, Materials Science and Engineering: C 48 (2015) 71-79.
[32] F. Bastami, Z. Paknejad, M. Jafari, M. Salehi, M.R. Rad, A. Khojasteh, Fabrication of a three-dimensional β-tricalcium-phosphate/gelatin containing chitosan-based nanoparticles for sustained release of bone morphogenetic protein-2: Implication for bone tissue engineering, Materials Science and Engineering: C 72 (2017) 481-491.
[33] J.-n. Yu, Y. Zhu, L. Wang, M. Peng, S.-s. Tong, X. Cao, H. Qiu, X.-m. Xu, Enhancement of oral bioavailability of the poorly water-soluble drug silybin by sodium cholate/phospholipid-mixed micelles, Acta pharmacologica sinica 31(6) (2010) 759-764.
[34] A. Ai, A. Behforouz, A. Ehterami, N. Sadeghvaziri, S. Jalali, S. Farzamfar, A. Yousefbeigi, A. Ai, A. goodarzi, M. Salehi, Sciatic nerve regeneration with collagen type I hydrogel containing chitosan nanoparticle loaded by insulin, International Journal of Polymeric Materials and Polymeric Biomaterials (2018) 1-10.
[35] M. Soleimani, S. Nadri, A protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow, Nature protocols 4(1) (2009) 102.
[36] X. Wang, S. Xu, S. Zhou, W. Xu, M. Leary, P. Choong, M. Qian, M. Brandt, Y.M. Xie, Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review, Biomaterials 83 (2016) 127-141.
[37] C. Ribeiro, J. Panadero, V. Sencadas, S. Lanceros-Méndez, M. Tamano, D. Moratal, M. Salmerón-Sánchez, J.G. Ribelles, Fibronectin adsorption and cell response on electroactive poly (vinylidene fluoride) films, Biomedical Materials 7(3) (2012) 035004.
[38] M.B.M.F. de Sousa, Development and Characterization of Poly (lactic acid)/Fish Gelatine Electrospun Membranes for Peripheral Nerve Regeneration, (2016).
[39] S. Calligaris, P. Comuzzo, F. Bot, G. Lippe, R. Zironi, M. Anese, M.C. Nicoli, Nanoemulsions as delivery systems of hydrophobic silybin from silymarin extract: effect of oil type on silybin solubility, in vitro bioaccessibility and stability, LWT-Food science and technology 63(1) (2015) 77-84.
[40] K. Khoshnevisan, H. Maleki, H. Samadian, M. Doostan, M.R. Khorramizadeh, Antibacterial and antioxidant assessment of cellulose acetate/polycaprolactone nanofibrous mats impregnated with propolis, International journal of biological macromolecules 140 (2019) 1260-1268.
[41] M. Labet, W. Thielemans, Synthesis of polycaprolactone: a review, Chemical Society Reviews 38(12) (2009) 3484-3504.
[42] M.A. Woodruff, D.W. Hutmacher, The return of a forgotten polymer—Polycaprolactone in the 21st century, Progress in polymer science 35(10) (2010) 1217-1256.
[43] M.S. Kim, I. Jun, Y.M. Shin, W. Jang, S.I. Kim, H. Shin, The development of genipin‐crosslinked poly (caprolactone)(PCL)/gelatin nanofibers for tissue engineering applications, Macromolecular bioscience 10(1) (2010) 91-100.
[44] F. Fayyazbakhsh, M. Solati-Hashjin, A. Keshtkar, M.A. Shokrgozar, M.M. Dehghan, B. Larijani, Novel layered double hydroxides-hydroxyapatite/gelatin bone tissue engineering scaffolds: Fabrication, characterization, and in vivo study, Materials Science and Engineering: C 76 (2017) 701-714.
[45] J. Hodde, Naturally occurring scaffolds for soft tissue repair and regeneration, Tissue engineering 8(2) (2002) 295-308.
[46] X. Liu, L.A. Smith, J. Hu, P.X. Ma, Biomimetic nanofibrous gelatin/apatite composite scaffolds for bone tissue engineering, Biomaterials 30(12) (2009) 2252-2258.
[47] C. Wang, J. Tong, Interfacial strength of novel PMMA/HA/nanoclay bone cement, Bio-medical materials and engineering 18(6) (2008) 367-375.
[48] A. Islam, A. Mishra, M.A. Siddiqui, S. Siddiquie, Recapitulation of Evidence of Phytochemical, Pharmacokinetic and Biomedical Application of Silybin, Drug Research (2021).
[49] H.G. Oufi, The cytogenetic effects of silibinin alone and in combination with methotrexate in mouse bone marrow, European journal of pharmacology 824 (2018) 179-184.
[50] H. Hosseinkhani, M. Hosseinkhani, F. Tian, H. Kobayashi, Y. Tabata, Bone regeneration on a collagen sponge self-assembled peptide-amphiphile nanofiber hybrid scaffold, Tissue engineering 13(1) (2007) 11-20.
[51] X. Liu, P.X. Ma, Polymeric scaffolds for bone tissue engineering, Annals of biomedical engineering 32(3) (2004) 477-486.
[52] J.J. Li, D.L. Kaplan, H. Zreiqat, Scaffold-based regeneration of skeletal tissues to meet clinical challenges, Journal of Materials Chemistry B 2(42) (2014) 7272-7306.
[53] M.I. Sabir, X. Xu, L. Li, A review on biodegradable polymeric materials for bone tissue engineering applications, Journal of materials science 44(21) (2009) 5713-5724.
[54] S. Henkelman, G. Rakhorst, J. Blanton, W. van Oeveren, Standardization of incubation conditions for hemolysis testing of biomaterials, Materials Science and Engineering: C 29(5) (2009) 1650-1654.
[55] R. Cancedda, Cartilage and bone extracellular matrix, Current pharmaceutical design 15(12) (2009) 1334-1348.
[56] H. Fernandes, L. Moroni, C. Van Blitterswijk, J. De Boer, Extracellular matrix and tissue engineering applications, Journal of materials chemistry 19(31) (2009) 5474-5484.
[57] L. Školoudík, V. Chrobok, Z. Kočí, J. Popelář, J. Syka, J. Laco, A. Filipová, E. Syková, S. Filip, The Transplantation of hBM-MSCs Increases Bone Neo-Formation and Preserves Hearing Function in the Treatment of Temporal Bone Defects–on the Experience of Two Month Follow Up, Stem Cell Reviews and Reports 14(6) (2018) 860-870.
[58] M. Salehi, A. Ai, A. Ehterami, M. Einabadi, A. Taslimi, A. Ai, H. Akbarzadeh, G.J. Ameli, S. Farzamfar, S. Shirian, In vitro and In vivo Investigation of poly (lactic acid)/hydroxyapatite nanoparticle scaffold containing nandrolone decanoate for the regeneration of critical-sized bone defects, Nanomedicine Journal 7(2) (2020) 115-123.