[1]. Eizirik, D.L., L. Pasquali and M. Cnop, Pancreatic beta-cells in type 1 and type 2 diabetes mellitus: different pathways to failure. Nat Rev Endocrinol, 2020. 16(7): p. 349-362.
[2]. Rodriguez-Comas, J., et al., Stress-Induced MicroRNA-708 Impairs beta-Cell Function and Growth. Diabetes, 2017. 66(12): p. 3029-3040.
[3]. Huang, Q., et al., Glucolipotoxicity-Inhibited miR-299-5p Regulates Pancreatic beta-Cell Function and Survival. Diabetes, 2018. 67(11): p. 2280-2292.
[4]. Oh, Y.S., Mechanistic insights into pancreatic beta-cell mass regulation by glucose and free fatty acids. Anat Cell Biol, 2015. 48(1): p. 16-24.
[5]. Remedi, M.S. and C. Emfinger, Pancreatic β-cell identity in diabetes. Diabetes, Obesity and Metabolism, 2016. 18: p. 110-116.
[6]. Talchai, C., et al., Pancreatic beta cell dedifferentiation as a mechanism of diabetic beta cell failure. Cell, 2012. 150(6): p. 1223-34.
[7]. Bartel, D.P., MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. 2004, Elsevier Inc: United States. p. 281-297.
[8]. Guo, H., et al., Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature, 2010. 466(7308): p. 835-840.
[9]. Kalis, M., et al., Beta-cell specific deletion of Dicer1 leads to defective insulin secretion and diabetes mellitus. PLoS One, 2011. 6(12): p. e29166.
[10]. Yu, Y., et al., miRNA-mRNA profile and regulatory network in stearic acid-treated beta-cell dysfunction. J Endocrinol, 2020. 246(1): p. 13-27.
[11]. Guo, J., et al., Palmitate-induced inhibition of insulin gene expression in rat islet beta-cells involves the ceramide transport protein. Cell Physiol Biochem, 2010. 26(4-5): p. 717-28.
[12]. Zhu, Y., et al., MicroRNA-24/MODY gene regulatory pathway mediates pancreatic beta-cell dysfunction. Diabetes, 2013. 62(9): p. 3194-206.
[13]. Zhu, Y., et al., Inhibition of the receptor for advanced glycation endproducts (RAGE) protects pancreatic beta-cells. Biochem Biophys Res Commun, 2011. 404(1): p. 159-65.
[14]. Li, Y., et al., Inhibition of tumor suppressor p53 preserves glycation-serum induced pancreatic beta-cell demise. Endocrine, 2016. 54(2): p. 383-395.
[15]. Salinno, C., et al., beta-Cell Maturation and Identity in Health and Disease. Int J Mol Sci, 2019. 20(21).
[16]. Spaeth, J.M., et al., Defining a Novel Role for the Pdx1 Transcription Factor in Islet beta-Cell Maturation and Proliferation During Weaning. Diabetes, 2017. 66(11): p. 2830-2839.
[17]. Cnop, M., et al., Endoplasmic reticulum stress and eIF2alpha phosphorylation: The Achilles heel of pancreatic beta cells. Mol Metab, 2017. 6(9): p. 1024-1039.
[18]. Allagnat, F., et al., Mcl-1 downregulation by pro-inflammatory cytokines and palmitate is an early event contributing to beta-cell apoptosis. Cell Death Differ, 2011. 18(2): p. 328-37.
[19]. Rozpedek, W., et al., The Role of the PERK/eIF2alpha/ATF4/CHOP Signaling Pathway in Tumor Progression During Endoplasmic Reticulum Stress. Curr Mol Med, 2016. 16(6): p. 533-44.
[20]. Wu, M.Z., et al., miR-25/93 mediates hypoxia-induced immunosuppression by repressing cGAS. Nat Cell Biol, 2017. 19(10): p. 1286-1296.
[21]. Elouil, H., et al., High glucose and hydrogen peroxide increase c-Myc and haeme-oxygenase 1 mRNA levels in rat pancreatic islets without activating NFkappaB. Diabetologia, 2005. 48(3): p. 496-505.
[22]. Thomaidou, S., A. Zaldumbide and B.O. Roep, Islet stress, degradation and autoimmunity. Diabetes Obes Metab, 2018. 20 Suppl 2: p. 88-94.
[23]. Lin, X., et al., Downregulation of Bcl-2 expression by miR-34a mediates palmitate-induced Min6 cells apoptosis. J Diabetes Res, 2014. 2014: p. 258695.
[24]. Sun, Y., et al., Inhibition of miR-153, an IL-1beta-responsive miRNA, prevents beta cell failure and inflammation-associated diabetes. Metabolism, 2020. 111: p. 154335.
[25]. Taganov, K.D., et al., NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A, 2006. 103(33): p. 12481-6.
[26]. Naya, F.J., et al., Diabetes, defective pancreatic morphogenesis, and abnormal enteroendocrine differentiation in BETA2/neuroD-deficient mice. Genes Dev, 1997. 11(18): p. 2323-34.
[27]. Fu, Z., E.R. Gilbert and D. Liu, Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes. Curr Diabetes Rev, 2013. 9(1): p. 25-53.
[28]. Zhu, Y., et al., MicroRNA-24 promotes pancreatic beta cells toward dedifferentiation to avoid endoplasmic reticulum stress-induced apoptosis. J Mol Cell Biol, 2019. 11(9): p. 747-760.
[29]. Senichkin, V.V., et al., Molecular Comprehension of Mcl-1: From Gene Structure to Cancer Therapy. Trends Cell Biol, 2019. 29(7): p. 549-562.
[30]. Meyerovich, K., et al., MCL-1 Is a Key Antiapoptotic Protein in Human and Rodent Pancreatic beta-Cells. Diabetes, 2017. 66(9): p. 2446-2458.
[31]. Roggli, E., et al., Changes in microRNA expression contribute to pancreatic beta-cell dysfunction in prediabetic NOD mice. Diabetes, 2012. 61(7): p. 1742-51.
[32]. Delbridge, A.R., et al., Thirty years of BCL-2: translating cell death discoveries into novel cancer therapies. Nat Rev Cancer, 2016. 16(2): p. 99-109.
[33]. Jacovetti, C., et al., Postnatal beta-cell maturation is associated with islet-specific microRNA changes induced by nutrient shifts at weaning. Nat Commun, 2015. 6: p. 8084.
[34]. Eliasson, L. and R. Regazzi, Micro(RNA) Management and Mismanagement of the Islet. J Mol Biol, 2020. 432(5): p. 1419-1428.
[35]. Mandelbaum, A.D., et al., miR-17-92 and miR-106b-25 clusters regulate beta cell mitotic checkpoint and insulin secretion in mice. Diabetologia, 2019. 62(9): p. 1653-1666.
[36]. Zhao, Y.F., et al., Cholesterol induces mitochondrial dysfunction and apoptosis in mouse pancreatic beta-cell line MIN6 cells. Endocrine, 2010. 37(1): p. 76-82.
[37]. Tuo, Y., et al., Long-term exposure of INS-1 rat insulinoma cells to linoleic acid and glucose in vitro affects cell viability and function through mitochondrial-mediated pathways. Endocrine, 2011. 39(2): p. 128-38.
[38]. Nielsen, L.B., et al., Circulating levels of microRNA from children with newly diagnosed type 1 diabetes and healthy controls: evidence that miR-25 associates to residual beta-cell function and glycaemic control during disease progression. Exp Diabetes Res, 2012. 2012: p. 896362.