1 Huang, W., Long, E., Wang, J., Huang, R. & Ma, L. Characterizing spatial distribution and temporal variation of PM10 and PM2.5 mass concentrations in an urban area of Southwest China. Atmospheric Pollution Research6, 842-848, doi:10.5094/APR.2015.093 (2015).
2 Honda, A. et al. Effects of air pollution-related heavy metals on the viability and inflammatory responses of human airway epithelial cells. International journal of toxicology34, 195-203, doi:10.1177/1091581815575757 (2015).
3 Feng, S., Gao, D., Liao, F., Zhou, F. & Wang, X. The health effects of ambient PM2.5 and potential mechanisms. Ecotoxicol Environ Saf128, 67-74, doi:10.1016/j.ecoenv.2016.01.030 (2016).
4 Costa, A. F., Hoek, G., Brunekreef, B. & Ponce de Leon, A. C. Air Pollution and Deaths among Elderly Residents of Sao Paulo, Brazil: An Analysis of Mortality Displacement. Environ Health Perspect125, 349-354, doi:10.1289/EHP98 (2017).
5 Baxter, L. K., Crooks, J. L. & Sacks, J. D. Influence of exposure differences on city-to-city heterogeneity in PM2.5-mortality associations in US cities. Environ Health16, 1, doi:10.1186/s12940-016-0208-y (2017).
6 Patel, M. M. et al. Ambient metals, elemental carbon, and wheeze and cough in New York City children through 24 months of age. Am J Respir Crit Care Med180, 1107-1113, doi:10.1164/rccm.200901-0122OC (2009).
7 Lagorio, S. et al. Air pollution and lung function among susceptible adult subjects: a panel study. Environ Health5, 11, doi:10.1186/1476-069X-5-11 (2006).
8 Hirshon, J. M. et al. Elevated ambient air zinc increases pediatric asthma morbidity. Environ Health Perspect116, 826-831, doi:10.1289/ehp.10759 (2008).
9 Chen, Y. C. et al. Characteristics of Concentrations and Metal Compositions for PM2.5 and PM2.5–10 in Yunlin County, Taiwan during Air Quality Deterioration. Aerosol and Air Quality Research15, 2571-2583, doi:10.4209/aaqr.2015.04.0261 (2015).
10 Nemery, B. Metal toxicity and the respiratory tract. Eur Respir J3, 202-219 (1990).
11 Chen, Y. et al. Summer-winter differences of PM2.5 toxicity to human alveolar epithelial cells (A549) and the roles of transition metals. Ecotoxicol Environ Saf165, 505-509, doi:10.1016/j.ecoenv.2018.09.034 (2018).
12 Ramsey, K. in Handbook of Arsenic Toxicology (ed S. J. S. Flora) 335-347 (Academic Press, 2015).
13 Parvez, F. et al. Arsenic exposure and impaired lung function. Findings from a large population-based prospective cohort study. Am J Respir Crit Care Med188, 813-819, doi:10.1164/rccm.201212-2282OC (2013).
14 De, B. K., Majumdar, D., Sen, S., Guru, S. & Kundu, S. Pulmonary involvement in chronic arsenic poisoning from drinking contaminated ground-water. J Assoc Physicians India52, 395-400 (2004).
15 Stedman, T. L. Stedman's medical dictionary. 27th ed. edn, 1035 (Lippincott Williams & Wilkins, 2000).
16 Ochs, M. et al. The number of alveoli in the human lung. Am J Respir Crit Care Med169, 120-124, doi:10.1164/rccm.200308-1107OC (2004).
17 Wang, Y. et al. Pulmonary alveolar type I cell population consists of two distinct subtypes that differ in cell fate. Proc Natl Acad Sci U S A115, 2407-2412, doi:10.1073/pnas.1719474115 (2018).
18 Kemp, S. J. et al. Immortalization of human alveolar epithelial cells to investigate nanoparticle uptake. Am J Respir Cell Mol Biol39, 591-597, doi:10.1165/rcmb.2007-0334OC (2008).
19 Dekali, S. et al. Assessment of an in vitro model of pulmonary barrier to study the translocation of nanoparticles. Toxicol Rep1, 157-171, doi:10.1016/j.toxrep.2014.03.003 (2014).
20 Poenar, D. P., Yang, G., Wan, W. K. & Feng, S. Low-Cost Method and Biochip for Measuring the Trans-Epithelial Electrical Resistance (TEER) of Esophageal Epithelium. Materials (Basel)13, 2354, doi:10.3390/ma13102354 (2020).
21 Kuehn, A. et al. Human alveolar epithelial cells expressing tight junctions to model the air-blood barrier. ALTEX33, 251-260, doi:10.14573/altex.1511131 (2016).
22 Ehrhardt, C. et al. 16HBE14o- human bronchial epithelial cell layers express P-glycoprotein, lung resistance-related protein, and caveolin-1. Pharm Res20, 545-551, doi:10.1023/a:1023230328687 (2003).
23 Forbes, B., Shah, A., Martin, G. P. & Lansley, A. B. The human bronchial epithelial cell line 16HBE14o- as a model system of the airways for studying drug transport. Int J Pharm257, 161-167, doi:10.1016/s0378-5173(03)00129-7 (2003).
24 Grainger, C. I., Greenwell, L. L., Lockley, D. J., Martin, G. P. & Forbes, B. Culture of Calu-3 cells at the air interface provides a representative model of the airway epithelial barrier. Pharm Res23, 1482-1490, doi:10.1007/s11095-006-0255-0 (2006).
25 Gordon, S. et al. Non-animal models of epithelial barriers (skin, intestine and lung) in research, industrial applications and regulatory toxicology. ALTEX32, 327-378, doi:10.14573/altex.1510051 (2015).
26 Han, S. & Mallampalli, R. K. The acute respiratory distress syndrome: from mechanism to translation. J Immunol194, 855-860, doi:10.4049/jimmunol.1402513 (2015).
27 Mukhopadhyay, S., Hoidal, J. R. & Mukherjee, T. K. Role of TNFalpha in pulmonary pathophysiology. Respir Res7, 125, doi:10.1186/1465-9921-7-125 (2006).
28 Chen, Y. et al. Stimulation of airway mucin gene expression by interleukin (IL)-17 through IL-6 paracrine/autocrine loop. J Biol Chem278, 17036-17043, doi:10.1074/jbc.M210429200 (2003).
29 Thacker, E. L. Lung inflammatory responses. Veterinary research37, 469-486, doi:10.1051/vetres:2006011 (2006).
30 Bautista, M. V. et al. IL-8 regulates mucin gene expression at the posttranscriptional level in lung epithelial cells. J Immunol183, 2159-2166, doi:10.4049/jimmunol.0803022 (2009).
31 Figueroa, D., Asaduzzaman, M. & Young, F. Real time monitoring and quantification of reactive oxygen species in breast cancer cell line MCF-7 by 2′,7′–dichlorofluorescin diacetate (DCFDA) assay. Journal of Pharmacological and Toxicological Methods94, 26-33, doi:10.1016/j.vascn.2018.03.007 (2018).
32 Evans, K. V. & Lee, J. H. Alveolar wars: The rise of in vitro models to understand human lung alveolar maintenance, regeneration, and disease. Stem Cells Transl Med9, 867-881, doi:10.1002/sctm.19-0433 (2020).
33 Mu, Y., Wang, R. & Wang, H. Programmed Cell Death of Cultured A549 Lung Epithelial Cells Induced by Sodium Arsenite Exposure. Journal of Medicinal Chemistry & Toxicology2, 85-89, doi:10.15436/2575-808X.17.1471 (2017).
34 Takano, Y., Taguchi, T., Suzuki, I., Balis, J. U. & Yuri, K. Cytotoxicity of heavy metals on primary cultured alveolar type II cells. Environ Res89, 138-145, doi:10.1006/enrs.2002.4354 (2002).
35 Truong-Tran, A. Q., Carter, J., Ruffin, R. & Zalewski, P. D. New insights into the role of zinc in the respiratory epithelium. Immunol Cell Biol79, 170-177, doi:10.1046/j.1440-1711.2001.00986.x (2001).
36 Marcinčáková, D. et al. Impact of Zinc Sulfate Exposition on Viability, Proliferation and Cell Cycle Distribution of Epithelial Kidney Cells. Polish Journal of Environmental Studies28, 3279-3286, doi:10.15244/pjoes/94045 (2019).
37 Sharif, R., Thomas, P., Zalewski, P., Graham, R. D. & Fenech, M. The effect of zinc sulphate and zinc carnosine on genome stability and cytotoxicity in the WIL2-NS human lymphoblastoid cell line. Mutat Res720, 22-33, doi:10.1016/j.mrgentox.2010.12.004 (2011).
38 Li, Y. et al. Zinc inhibits the reproductive toxicity of Zearalenone in immortalized murine ovarian granular KK-1 cells. Sci Rep5, 14277, doi:10.1038/srep14277 (2015).
39 Mukherjee, T., Squillantea, E., Gillespieb, M. & Shao, J. Transepithelial electrical resistance is not a reliable measurement of the Caco-2 monolayer integrity in Transwell. Drug Deliv11, 11-18, doi:10.1080/10717540490280345 (2004).
40 Narai, A., Arai, S. & Shimizu, M. Rapid decrease in transepithelial electrical resistance of human intestinal Caco-2 cell monolayers by cytotoxic membrane perturbents. Toxicol In Vitro11, 347-354, doi:10.1016/s0887-2333(97)00026-x (1997).
41 Calabro, A. R., Konsoula, R. & Barile, F. A. Evaluation of in vitro cytotoxicity and paracellular permeability of intact monolayers with mouse embryonic stem cells. Toxicol In Vitro22, 1273-1284, doi:10.1016/j.tiv.2008.02.023 (2008).
42 Konsoula, R. & Barile, F. A. Correlation of in vitro cytotoxicity with paracellular permeability in Caco-2 cells. Toxicol In Vitro19, 675-684, doi:10.1016/j.tiv.2005.03.006 (2005).
43 Zhu, C., Hu, W., Wu, H. & Hu, X. No evident dose-response relationship between cellular ROS level and its cytotoxicity--a paradoxical issue in ROS-based cancer therapy. Sci Rep4, 5029, doi:10.1038/srep05029 (2014).
44 Ighodaro, O. M. & Akinloye, O. A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria Journal of Medicine54, 287-293, doi:10.1016/j.ajme.2017.09.001 (2019).
45 He, L. et al. Antioxidants Maintain Cellular Redox Homeostasis by Elimination of Reactive Oxygen Species. Cell Physiol Biochem44, 532-553, doi:10.1159/000485089 (2017).
46 Birben, E., Sahiner, U. M., Sackesen, C., Erzurum, S. & Kalayci, O. Oxidative stress and antioxidant defense. World Allergy Organ J5, 9-19, doi:10.1097/WOX.0b013e3182439613 (2012).
47 Day, R. M. & Suzuki, Y. J. Cell proliferation, reactive oxygen and cellular glutathione. Dose Response3, 425-442, doi:10.2203/dose-response.003.03.010 (2006).
48 Green, D. R. & Llambi, F. Cell Death Signaling. Cold Spring Harb Perspect Biol7, a006080, doi:10.1101/cshperspect.a006080 (2015).
49 Belizario, J., Vieira-Cordeiro, L. & Enns, S. Necroptotic Cell Death Signaling and Execution Pathway: Lessons from Knockout Mice. Mediators Inflamm2015, 128076, doi:10.1155/2015/128076 (2015).
50 Shen, C. et al. Relating cytotoxicity, zinc ions, and reactive oxygen in ZnO nanoparticle-exposed human immune cells. Toxicol Sci136, 120-130, doi:10.1093/toxsci/kft187 (2013).
51 Locksley, R. M., Killeen, N. & Lenardo, M. J. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell104, 487-501, doi:10.1016/s0092-8674(01)00237-9 (2001).
52 Steeland, S., Libert, C. & Vandenbroucke, R. E. A New Venue of TNF Targeting. Int J Mol Sci19, 1442, doi:10.3390/ijms19051442 (2018).
53 Maria, B., Koizumi, S. & Jonai, H. Cytokine Production by Human Peripheral Blood Mononuclear cells after Exposure to Heavy Metals. JOURNAL OF HEALTH SCIENCE46, 358-362, doi:10.1248/jhs.46.358 (2000).
54 Koo, H. N. et al. Taraxacum officinale induces cytotoxicity through TNF-alpha and IL-1alpha secretion in Hep G2 cells. Life Sci74, 1149-1157, doi:10.1016/j.lfs.2003.07.030 (2004).
55 Liu, S. et al. Arsenic induced overexpression of inflammatory cytokines based on the human urothelial cell model in vitro and urinary secretion of individuals chronically exposed to arsenic. Chem Res Toxicol27, 1934-1942, doi:10.1021/tx5002783 (2014).
56 Riemschneider, S., Herzberg, M. & Lehmann, J. Subtoxic Doses of Cadmium Modulate Inflammatory Properties of Murine RAW 264.7 Macrophages. Biomed Res Int2015, 295303, doi:10.1155/2015/295303 (2015).
57 Scheller, J., Chalaris, A., Schmidt-Arras, D. & Rose-John, S. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta1813, 878-888, doi:10.1016/j.bbamcr.2011.01.034 (2011).
58 Kayaalti, Z. et al. Effects of the interleukin-6 (IL-6) polymorphism on toxic metal and trace element levels in placental tissues. Sci Total Environ409, 4929-4933, doi:10.1016/j.scitotenv.2011.08.036 (2011).
59 Gonzalez-Amaro, R. et al. Plasma levels and in vitro production of tumor necrosis factor-alpha and interleukin-6 in patients with amebic liver abscess. Rev Invest Clin46, 209-213 (1994).
60 Yimin, Kohanawa, M. & Minagawa, T. Up-regulation of granulomatous inflammation in interleukin-6 knockout mice infected with Rhodococcus aurantiacus. Immunology110, 501-506, doi:10.1111/j.1365-2567.2003.01762.x (2003).
61 Diao, H. & Kohanawa, M. Endogenous interleukin-6 plays a crucial protective role in streptococcal toxic shock syndrome via suppression of tumor necrosis factor alpha production. Infect Immun73, 3745-3748, doi:10.1128/IAI.73.6.3745-3748.2005 (2005).
62 Yimin & Kohanawa, M. A regulatory effect of the balance between TNF-alpha and IL-6 in the granulomatous and inflammatory response to Rhodococcus aurantiacus infection in mice. J Immunol177, 642-650, doi:10.4049/jimmunol.177.1.642 (2006).