Akhtar, S., Warburton, S., & Xu, W. (2017). The use of an online learning and teaching system for monitoring computer aided design student participation and predicting student success. International Journal of Technology & Design Education, 27, 251–270. doi:10.1007/s10798-015-9346-8
Bennedsen, Jens & Caspersen, Michael. (2007). Failure rates in introductory programming. SIGCSE Bulletin. 39. 32-36. 10.1145/1272848.1272879.
Buldu, A., & Üçgün, K. (2010). Data mining application on students’ data. Procedia-Social and Behavioral Sciences, 2(2), 5251-5259.
Chao, H., Qingyu, Y., Mingwei, D., & Donghui, Y. (2017). Financial distress prediction using SVM ensemble based on earnings manipulation and fuzzy integral. Intelligent Data Analysis, 21, 617–636. doi:10.3233/IDA-160034
Chaudhuri, A. (2014). Modified fuzzy support vector machine for credit approval classification. AI Communications, 27, 189–211. doi:10.3233/AIC-140597
Dalton, D., Moore, C. A., & Whittaker, R. (2009). First-generation, low-income students. New England Journal of Higher Education, 23(5), 26–27. http://www.nebhe.org/thejournal/
de Carvalho Filho, A. O., Silva, A. C., de Paiva, A. C., Nunes, R. A., Gattass, M., & Gattass, M. (2017). Computer-aided diagnosis system for lung nodules based on computed tomography using shape analysis, a genetic algorithm, and SVM. Medical & Biological Engineering & Computing, 55, 1129–1146. doi:10.1007/s11517-016-1577-7.
Er, E. (2012). Identifying at-risk students using machine learning techniques: A case study with is 100. International Journal of Machine Learning and Computing, 476–480. https://doi.org/10.7763/ijmlc.2012.v2.171c
Faulconer, J., Geissler, J., Majewski, D., & Trifilo, J. (2013). Adoption of an early-alert system to support university student success. Delta Kappa Gamma Bulletin, 80(2), 45–48. http://www.dkg.org/
Hardgrave, B. C., & Wilson, R. L. (1994). Predicting graduate student success: A comparison of neural networks and traditional techniques. Computers & Operations Research, 21, 249–264. doi:10.1016/0305-0548(94)90088-4
Hanover Research. (2014). Early Alert Systems in Higher Education. https://www.hanoverresearch.com/wp-content/uploads/2017/08/Early-Alert-Systems-in-Higher-Education.pdf.
Hamman, K. (2016). Factors that contribute to the likeliness of academic recovery. Journal of College Student Retention: Research, Theory & Practice, 20, 162–175. doi:10.1177/1521025116652636.
Kaur, A., Sood, N., Aggarwal, N., Vij, D., & Sachdeva, B. (2017). Traffic state detection using smartphone based acoustic sensing. Journal of Intelligent & Fuzzy Systems, 32, 3159–3166. doi:10.3233/JIFS-169259.
Khan, S. A., Riaz, N., Akram, S., & Latif, S. (2015). Facial expression recognition using computationally intelligent techniques. Journal of Intelligent & Fuzzy Systems, 28, 2881–2887. doi:10.3233/IFS-151567.
Kim, S. H., & Hak Chun, S. (1998). Graded forecasting using an array of bipolar predictions: Application of Probabilistic Neural Networks to a stock market index. International Journal of Forecasting, 14(3), 323–337. https://doi.org/10.1016/s0169-2070(98)00003-x
Kotsiantis, S.B. Use of machine learning techniques for educational proposes: a decision support system for forecasting students’ grades. Artif Intell Rev 37, 331–344 (2012). https://doi.org/10.1007/s10462-011-9234-x.
Millea, M., Wills, R., Elder, A., & Molina, D. (2018). What matters in college student success? Determinants of college retention and graduation rates. Education, 138, 309–322.
Naik, B., & Ragothaman, S. (2004). Using neural networks to predict MBA student success. College Student Journal, 38, 143–150. http://www.projectinnovation.com/college-student-journal.html
NeuroSolutions. (2014). What is Leave-N-Out? http://www.neurosolutions.com
/infinity/help/index.html?WhatisLeaveNOut.html
Noel Levitz. (2015). Student retention and college completion practices benchmark report for two-year and four-year institutions. http://learn.ruffalonl.com/rs/395-EOG-977/images/2015RetentionPracticesBenchmarkReport.pdf
Software Developers: Occupational Outlook Handbook. (2020, September 01). https://www.bls.gov/ooh/computer-and-information-technology/software-developers.htm
Tseng, G. (2007). Support vector machines. In N. J. Salkind (Ed.), Encyclopedia of measurement and statistics (Vol. 1, pp. 979–980). Thousand Oaks, CA: Sage.
U.S. Bureau of Labor Statistics. (2021, September 15). Home: Occupational outlook handbook. U.S. Bureau of Labor Statistics. https://www.bls.gov/ooh/computer-and-information-technology/software-developers.htmv.
Watson C. & Li Frederick Li. (2014). Failure rates in introductory programming revisited. Proceedings of the 2014 Conference on Innovation & technology in computer science education (ITiCSE '14). Association for Computing Machinery, New York, NY, USA, 39–44.
van Heerden, B., Aldrich, C., & du Plessis, A. (2008). Predicting student performance using artificial neural network analysis. Medical Education, 42, 516–517. doi:10.1111/j.1365-2923.2008.03052.x
Vapnik, V. (1995). The nature of statistical learning theory. New York, NY: Springer-Verlag.
Yang, Z. R., Platt, M. B., & Platt, H. D. (1999). Probabilistic neural networks in bankruptcy prediction. Journal of Business Research, 44(2), 67–74. https://doi.org/10.1016/s0148-2963(97)00242-7.