1. Parkkari, J., Pasanen, K., Mattila, V. M., Kannus, P. & Rimpelä, A. The risk for a cruciate ligament injury of the knee in adolescents and young adults: a population-based cohort study of 46500 people with a 9 year follow-up. Br. J. Sports Med. 42, 422–426 (2008).10.1136/bjsm.2008.046185, Pubmed:18390920
2. Moksnes, H., Engebretsen, L. & Risberg, M. A. Performance-based functional outcome for children 12 years or younger following anterior cruciate ligament injury: a two to nine-year follow-up study. Knee Surg. Sports Traumatol. Arthrosc. 16, 214–223 (2008).10.1007/s00167-007-0469-7, Pubmed:18157486
3. Brophy, R. H., Wright, R. W. & Matava, M. J. Cost analysis of converting from single-bundle to double-bundle anterior cruciate ligament reconstruction. Am. J. Sports Med. 37, 683–687 (2009).10.1177/0363546508328121, Pubmed:19204364
4. Mohtadi, N. G. H., Chan, D. S., Dainty, K. N. & Whelan, D. B. Patellar tendon versus hamstring tendon autograft for anterior cruciate ligament rupture in adults. Cochrane DatabaseSyst. Rev. (9), CD005960 (2011).10.1002/14651858.CD005960.pub2, Pubmed:21901700
5. Shino, K., Oakes, B. W., Horibe, S., Nakata, K. & Nakamura, N. Collagen fibril populations in human anterior cruciate ligament allografts. Electron microscopic analysis. Am. J. Sports Med. 23, 203–208; discussion 209 (1995).10.1177/036354659502300213, Pubmed:7778706
6. Hamido, F. et al. The use of the LARS artificial ligament to augment a short or undersized ACL hamstrings tendon graft. Knee 18, 373–378 (2011).10.1016/j.knee.2010.09.003, Pubmed:21062673
7. Schroven, I. T., Geens, S., Beckers, L., Lagrange, W. & Fabry, G. Experience with the Leeds-Keio artificial ligament for anterior cruciate ligament reconstruction. Knee Surg. Sports Traumatol. Arthrosc. 2, 214–218 (1994).10.1007/BF01845590, Pubmed:8536043
8. Patel, R. & Trampuz, A. Infections transmitted through musculoskeletal-tissue allografts. N.Engl.J.Med. 350, 2544–2546 (2004).10.1056/NEJMp048090, Pubmed:15201409
9. Hulet, C. et al. The use of allograft tendons in primary ACL reconstruction. Knee Surg. Sports Traumatol. Arthrosc. 27, 1754–1770 (2019).10.1007/s00167-019-05440-3, Pubmed:30830297
10. Christen, B. & Jakob, R. P. Fractures associated with patellar ligament grafts in cruciate ligament surgery. J.Bone Joint Surg.Br. 74, 617–619 (1992).10.1302/0301-620X.74B4.1624526, Pubmed:1624526
11. Breitfuss, H., Fröhlich, R., Povacz, P., Resch, H. & Wicker, A. The tendon defect after anterior cruciate ligament reconstruction using the midthird patellar tendon-a problem for the patellofemoral joint? KneeSurg. Sports Traumatol. Arthrosc. 3, 194–198 (1996).10.1007/BF01466615, Pubmed:8739711
12. Mochizuki, T., Muneta, T., Yagishita, K., Shinomiya, K. & Sekiya, I. Skin sensory change after arthroscopically-assisted anterior cruciate ligament reconstruction using medial hamstring tendons with a vertical incision. Knee Surg. Sports Traumatol. Arthrosc. 12, 198–202 (2004).10.1007/s00167-003-0451-y, Pubmed:14625669
13. Conte, E. J., Hyatt, A. E., Gatt, C. J., Jr & Dhawan, A. Hamstring autograft size can be predicted and is a potential risk factor for anterior cruciate ligament reconstruction failure. Arthroscopy 30, 882–890 (2014).10.1016/j.arthro.2014.03.028, Pubmed:24951356
14. Park, S. Y. et al. Factors predicting hamstring tendon autograft diameters and resulting failure rates after anterior cruciate ligament reconstruction. Knee Surg. Sports Traumatol. Arthrosc. 21, 1111–1118 (2013).10.1007/s00167-012-2085-4, Pubmed:22688502
15. Tuman, J. M. et al. Predictors for hamstring graft diameter in anterior cruciate ligament reconstruction. Am. J. Sports Med. 35, 1945–1949 (2007).10.1177/0363546507304667, Pubmed:17644660
16. Brown, C. H., Jr. Editorial commentary: how to increase hamstring tendon graft size for anterior cruciate ligament reconstruction. Arthroscopy 34, 2641–2646 (2018).10.1016/j.arthro.2018.06.014, Pubmed:30173804
17. George, M. S., Dunn, W. R. & Spindler, K. P. Current concepts review: revision anterior cruciate ligament reconstruction. Am. J. Sports Med. 34, 2026–2037 (2006).10.1177/0363546506295026, Pubmed:17092921
18. Yao, S., Fu, B. S. & Yung, P. S. Graft healing after anterior cruciate ligament reconstruction (ACLR). Asia Pac.J.Sports Med.Arthrosc.Rehabil.Technol. 25, 8–15 (2021).10.1016/j.asmart.2021.03.003, Pubmed:34094881
19. Ekdahl, M., Wang, J. H., Ronga, M. & Fu, F. H. Graft healing in anterior cruciate ligament reconstruction. Knee Surg. Sports Traumatol. Arthrosc. 16, 935–947 (2008).10.1007/s00167-008-0584-0, Pubmed:18633596
20. Hays, P. L. et al. The role of macrophages in early healing of a tendon graft in a bone tunnel. J. Bone Joint Surg. Am. 90, 565–579 (2008).10.2106/JBJS.F.00531, Pubmed:18310707
21. Kobayashi, M. et al. The fate of host and graft cells in early healing of bone tunnel after tendon graft. Am. J. Sports Med. 33, 1892–1897 (2005).10.1177/0363546505277140, Pubmed:16157856
22. Liu, S. H. et al. Morphology and matrix composition during early tendon to bone healing. Clin.Orthop.Relat.Res. (339), 253–260 (1997).10.1097/00003086-199706000-00034, Pubmed:9186227
23. Rodeo, S. A., Arnoczky, S. P., Torzilli, P. A., Hidaka, C. & Warren, R. F. Tendon-healing in a bone tunnel. A biomechanical and histological study in the dog. J. Bone Joint Surg. Am. 75, 1795–1803 (1993).10.2106/00004623-199312000-00009, Pubmed:8258550
24. Rodeo, S. A., Suzuki, K., Deng, X. H., Wozney, J. & Warren, R. F. Use of recombinant human bone morphogenetic protein-2 to enhance tendon healing in a bone tunnel. Am. J. Sports Med. 27, 476–488 (1999).10.1177/03635465990270041201, Pubmed:10424218
25. Ge, Y. et al. Comparison of tendon-bone healing between autografts and allografts after anterior cruciate ligament reconstruction using magnetic resonance imaging. Knee Surg. Sports Traumatol. Arthrosc. 23, 954–960 (2015).10.1007/s00167-013-2755-x, Pubmed:24196576
26. Farnebo, S. et al. Decellularized tendon-bone composite grafts for extremity reconstruction: an experimental study. Plast. Reconstr. Surg. 133, 79–89 (2014).10.1097/01.prs.0000436823.64827.a0, Pubmed:24374670
27. Gilbert, T. W., Sellaro, T. L. & Badylak, S. F. Decellularization of tissues and organs. Biomaterials 27, 3675–3683 (2006).10.1016/j.biomaterials.2006.02.014, Pubmed:16519932
28. Badylak, S. F. Xenogeneic extracellular matrix as a scaffold for tissue reconstruction. Transpl.Immunol. 12, 367–377 (2004).10.1016/j.trim.2003.12.016, Pubmed:15157928
29. Amiel, D., Kleiner, J. B. & Akeson, W. H. The natural history of the anterior cruciate ligament autograft of patellar tendon origin. Am. J. Sports Med. 14, 449–462 (1986).10.1177/036354658601400603, Pubmed:3799871
30. Arnoczky, S. P., Tarvin, G. B. & Marshall, J. L. Anterior cruciate ligament replacement using patellar tendon. An evaluation of graft revascularization in the dog. J. Bone Joint Surg. Am. 64, 217–224 (1982).10.2106/00004623-198264020-00011, Pubmed:7056776
31. Clancy, W. G. J. et al. Anterior and posterior cruciate ligament reconstruction in rhesus monkeys. J. Bone Joint Surg. Am. 63, 1270–1284 (1981).10.2106/00004623-198163080-00008, Pubmed:7287797
32. Kondo, E. et al. Biomechanical and histological evaluations of the doubled semitendinosus tendon autograft after anterior cruciate ligament reconstruction in sheep. Am. J. Sports Med. 40, 315–324 (2012).10.1177/0363546511426417, Pubmed:22088579
33. Iismaa, S. E. et al. Comparative regenerative mechanisms across different mammalian tissues. npjRegen.Med. 3, 6 (2018).10.1038/s41536-018-0044-5, Pubmed:29507774
34. Donnenberg, V. S., Zimmerlin, L., Rubin, J. P. & Donnenberg, A. D. Regenerative therapy after cancer: what are the risks? Tissue Eng.Part B Rev. 16, 567–575 (2010).10.1089/ten.TEB.2010.0352, Pubmed:20726819
35. Wong, G. S. & Rustgi, A. K. Matricellular proteins: priming the tumour microenvironment for cancer development and metastasis. Br.J.Cancer 108, 755–761 (2013).10.1038/bjc.2012.592, Pubmed:23322204
36. Werb, Z. & Lu, P. The role of stroma in tumor development. CancerJ. 21, 250–253 (2015).10.1097/PPO.0000000000000127, Pubmed:26222075
37. Edwards, J. P., Zhang, X., Frauwirth, K. A. & Mosser, D. M. Biochemical and functional characterization of three activated macrophage populations. J.Leukoc.Biol. 80, 1298–1307 (2006).10.1189/jlb.0406249, Pubmed:16905575
38. Benoit, M., Desnues, B. & Mege, J. L. Macrophage polarization in bacterial infections. J.Immunol. 181, 3733–3739 (2008).10.4049/jimmunol.181.6.3733, Pubmed:18768823
39. Van Ginderachter, J. A. et al. Classical and alternative activation of mononuclear phagocytes: picking the best of both worlds for tumor promotion. Immunobiology 211, 487–501 (2006).10.1016/j.imbio.2006.06.002, Pubmed:16920488
40. Laskin, D. L. Macrophages and inflammatory mediators in chemical toxicity: a battle of forces. Chem.Res.Toxicol. 22, 1376–1385 (2009).10.1021/tx900086v, Pubmed:19645497
41. Mantovani, A., Sica, A. & Locati, M. Macrophage polarization comes of age. Immunity 23, 344–346 (2005).10.1016/j.immuni.2005.10.001, Pubmed:16226499
42. Sica, A. & Mantovani, A. Macrophage plasticity and polarization: in vivo veritas. J.Clin.Invest. 122, 787–795 (2012).10.1172/JCI59643, Pubmed:22378047
43. Verreck, F. A., de Boer, T., Langenberg, D. M., van der Zanden, L. & Ottenhoff, T. H. Phenotypic and functional profiling of human proinflammatory type-1 and anti-inflammatory type-2 macrophages in response to microbial antigens and IFN-gamma- and CD40L-mediated costimulation. J.Leukoc.Biol. 79, 285–293 (2006).10.1189/jlb.0105015, Pubmed:16330536
44. Mosser, D. M. The many faces of macrophage activation. J.Leukoc.Biol. 73, 209–212 (2003).10.1189/jlb.0602325, Pubmed:12554797
45. Badylak, S. F., Valentin, J. E., Ravindra, A. K., McCabe, G. P. & Stewart-Akers, A. M. Macrophage phenotype as a determinant of biologic scaffold remodeling. TissueEng. Part A 14, 1835–1842 (2008).10.1089/ten.tea.2007.0264, Pubmed:18950271
46. Porcheray, F. et al. Macrophage activation switching: an asset for the resolution of inflammation. Clin.Exp.Immunol. 142, 481–489 (2005).10.1111/j.1365-2249.2005.02934.x, Pubmed:16297160
47. Stout, R. D. et al. Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences. J. Immunol. 175, 342–349 (2005).10.4049/jimmunol.175.1.342, Pubmed:15972667
48. Brown, B. N., Valentin, J. E., Stewart-Akers, A. M., McCabe, G. P. & Badylak, S. F. Macrophage phenotype and remodeling outcomes in response to biologic scaffolds with and without a cellular component. Biomaterials 30, 1482–1491 (2009).10.1016/j.biomaterials.2008.11.040, Pubmed:19121538
49. Sugg, K. B., Lubardic, J., Gumucio, J. P. & Mendias, C. L. Changes in macrophage phenotype and induction of epithelial-to-mesenchymal transition genes following acute Achilles tenotomy and repair. J. Orthop. Res. 32, 944–951 (2014).10.1002/jor.22624, Pubmed:24700411
50. Marsolais, D., Côté, C. H. & Frenette, J. Neutrophils and macrophages accumulate sequentially following Achilles tendon injury. J. Orthop. Res. 19, 1203–1209 (2001).10.1016/S0736-0266(01)00031-6, Pubmed:11781025
51. Matthews, T. J., Hand, G. C., Rees, J. L., Athanasou, N. A. & Carr, A. J. Pathology of the torn rotator cuff tendon. Reduction in potential for repair as tear size increases. J.Bone Joint Surg.Br. 88, 489–495 (2006).10.1302/0301-620X.88B4.16845, Pubmed:16567784
52. Kawamura, S., Ying, L., Kim, H. J., Dynybil, C. & Rodeo, S. A. Macrophages accumulate in the early phase of tendon-bone healing. J. Orthop. Res. 23, 1425–1432 (2005).10.1016/j.orthres.2005.01.014.1100230627, Pubmed:16111854
53. Barboni, B. et al. Therapeutic potential of hAECs for early Achilles tendon defect repair through regeneration. J. Tissue Eng. Regen. Med. 12, e1594–e1608 (2018).10.1002/term.2584, Pubmed:29024514
54. Gelberman, R. H. et al. Combined administration of ASCs and BMP-12 promotes an M2 macrophage phenotype and enhances tendon healing. Clin.Orthop.Relat.Res. 475, 2318–2331 (2017).10.1007/s11999-017-5369-7, Pubmed:28462460
55. Pauzenberger, L., Syré, S. & Schurz, M.. "Ligamentization” in hamstring tendon grafts after anterior cruciate ligament reconstruction: a systematic review of the literature and a glimpse into the future. Arthroscopy 29, 1712–1721 (2013).10.1016/j.arthro.2013.05.009, Pubmed:23859954
56. Claes, S., Verdonk, P., Forsyth, R. & Bellemans, J. The “ligamentization” process in anterior cruciate ligament reconstruction: what happens to the human graft? A systematic review of the literature. Am. J. Sports Med. 39, 2476–2483 (2011).10.1177/0363546511402662, Pubmed:21515806
57. Iwasaki, K. et al. Innovative bioreactor technologies produced a completely decellularized and pre-endothelialized functional aortic valve. IFMBEProc. 12 (2005)
58. Crapo, P. M., Gilbert, T. W. & Badylak, S. F. An overview of tissue and whole organ decellularization processes. Biomaterials 32, 3233–3243 (2011).10.1016/j.biomaterials.2011.01.057, Pubmed:21296410
59. Lui, P. P., Lee, Y. W., Mok, T. Y., Cheuk, Y. C. & Chan, K. M. Alendronate reduced peri-tunnel bone loss and enhanced tendon graft to bone tunnel healing in anterior cruciate ligament reconstruction. Eur. Cell. Mater. 25, 78–96 (2013).10.22203/ecm.v025a06, Pubmed:23325540
60. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years ofimage analysis. Nat.Methods 9, 671–675 (2012).10.1038/nmeth.2089, Pubmed:22930834