Continuous-variable quantum key distribution (CVQKD) has potential advantages of high secret key rate, which is very suitable for high-speed metropolitan network application. However, the reported highest secret key rates of the CVQKD systems up to now are limited in a few Mbps. Here, we address the fundamental experimental problems and demonstrate a single-carrier four-state CVQKD with sub-Gbps key rate within metropolitan area. In the demonstrated four-state CVQKD using local local oscillator, an ultra-low level of excess noise is obtained and a high efficient post-processing setup is designed for practically extracting the final secure keys. Thus, the achieved secure key rates are 190.54 Mbps and 137.76 Mbps and 52.48 Mbps using linear channel assuming security analysis method and 233.87 Mbps, 133.6 Mbps and 21.53 Mbps using semidefinite programming security analysis method over transmission distances of 5 km, 10 km and 25 km, respectively. This record-breaking result increases the previous secret key rate record by an order of magnitude, which is sufficient to achieve the one-time pad cryptographic task. Our work shows the road for future high-rate and large-scale CVQKD deployment in secure broadband metropolitan and access networks.