[1] Diamond J. Evolution, consequences and future of plant and animal domestication.Nature. 2002; 418: 700-7.
[2] Ham YK, Kim SW, Song DH, Kim HW, Kim IS. Nutritional composition of white-spotted flower chafer (Protaetia brevitarsis) larvae produced from commercial insect farms in korea.Food Sci Anim Resour. 2021; 41: 416-27.
[3] Li Y, Fu T, Geng L, Shi Y, Chu H, Liu F, et al. Protaetia brevitarsis larvae can efficiently convert herbaceous and ligneous plant residues to humic acids.Waste Manage. 2019; 83: 79-82.
[4] Wei P, Li Y, Lai D, Geng L, Liu C, Zhang J, et al. Protaetia brevitarsis larvae can feed on and convert spent mushroom substrate from Auricularia auricula and Lentinula edodes cultivation.Waste Manage. 2020; 114: 234-9.
[5] Huang S, Zhang H, Marshall S, Jackson TA. The scarabgut: A potential bioreactor for bio-fuel production.Insect Sci. 2010; 17: 175-83.
[6] Lemke T, Stingl U, Egert M, Friedrich MW, Brune A. Physicochemical conditions and microbial activities in the highly alkaline gut of the humus-feeding larva ofPachnoda ephippiata (Coleoptera: Scarabaeidae).Appl Environ Microb. 2003; 69: 6650-8.
[7] Andlar M, Rezić T, Marđetko N, Kracher D, Ludwig R, Šantek B. Lignocellulose degradation: an overview of fungi and fungal enzymes involved in lignocellulose degradation.Eng Life Sci. 2018; 18: 768-78.
[8] Silva JP, Ticona ARP, Hamann PRV, Quirino BF, Noronha EF. Deconstruction of lignin: from enzymes to microorganisms.Molecules. 2021; 26: 2299.
[9] Lange L. Fungal enzymes and yeasts for conversion of plant biomass to bioenergy and high-value products.Microbiol Spectr. 2017; 5.
[10] Sabbadin F, Hemsworth GR, Ciano L, Henrissat B, Dupree P, Tryfona T, et al. An ancient family of lytic polysaccharide monooxygenases with roles in arthropod development and biomass digestion.Nat Commun. 2018; 9: 756.
[11] Couturier M, Ladevèze S, Sulzenbacher G, Ciano L, Fanuel M, Moreau C, et al. Lytic xylan oxidases from wood-decay fungi unlock biomass degradation.Nat Chem Biol. 2018; 14: 306-10.
[12] Hemsworth GR, Johnston EM, Davies GJ, Walton PH. Lytic polysaccharide monooxygenases in biomass conversion.Trends Biotechnol. 2015; 33: 747-61.
[13] Houfani AA, Anders N, Spiess AC, Baldrian P, Benallaoua S. Insights from enzymatic degradation of cellulose and hemicellulose to fermentable sugars– a review.Biomass Bioenerg. 2020; 134: 105481.
[14] Bredon M, Herran B, Bertaux J, Grève P, Moumen B, Bouchon D. Isopod holobionts as promising models for lignocellulose degradation.Biotechnol Biofuels. 2020; 13: 49.
[15] Brune A. Symbiotic digestion of lignocellulose in termite guts.Nat Rev Microbiol. 2014; 12: 168-80.
[16] Zeng W, Liu B, Zhong J, Li Q, Li Z. A natural high-sugar diet has different effects on the prokaryotic community structures of lower and higher termites (Blattaria).Environ Entomol. 2020; 49: 21-32.
[17] Su L, Yang L, Huang S, Su X, Li Y, Wang F, et al. Comparative gut microbiomes of four species representing the higher and the lower termites.J Insect Sci. 2016; 16: 97.
[18] Wang N, Wang W, Jiang Y, Dai W, Li P, Yao D, et al. Variations in bacterial taxonomic profiles and potential functions in response to the gut transit of earthworms (Eisenia fetida) feeding on cow manure.Sci Total Environ. 2021; 787: 147392.
[19] Kataev VY, Sleptsov, II, Martynov AA, Aduchiev BK, Khlopko YA, Miroshnikov SA, et al. Data on rumen and faeces microbiota profiles of Yakutian and Kalmyk cattle revealed by high-throughput sequencing of 16S rRNA gene amplicons.Data Brief. 2020; 33: 106407.
[20] Tian XY, Song FP, Zhang J, Liu RM, Zhang XP, Duan JY, et al. Diversity of gut bacteria in larval Protaetia brevitarsis(Coleoptera: Scarabaedia) fed on corn stalk.Acta Entomologica Sinica 2017; 60: 632-41.
[21] Wang K, Li P, Gao Y, Liu C, Wang Q, Yin J, et al. De novo genome assembly of the white-spotted flower chafer (Protaetia brevitarsis).GigaScience. 2019; 8: giz019.
[22] Chen S, Zhou Y, Chen Y, Gu J. Fastp: an ultra-fast all-in-one FASTQ preprocessor.Bioinformatics. 2018; 34: 884-90.
[23] Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner.Bioinformatics. 2013; 29: 15-21.
[24] Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads.Nat Biotechnol. 2015; 33: 290-5.
[25] Bolger AM, Marc L, Bjoern U. Trimmomatic: a flexible trimmer for Illumina sequence data.Bioinformatics. 2014; 30: 2114-20.
[26] Beghini F, McIver LJ, Blanco-Míguez A, Dubois L, Asnicar F, Maharjan S, et al. Integrating taxonomic, functional, and strain-level profiling of diverse microbial communities with bioBakery 3.elife. 2021; 10: e65088.
[27] Li D, Liu CM, Luo R, Kunihiko S, Tak-Wah L. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijngraph.Bioinformatics. 2015; 31: 1674-6.
[28] Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.ArXiv. 2013; 1303: 3997.
[29] Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools.Bioinformatics. 2009; 25: 2078-9.
[30] Wu YW, Simmons BA, Singer SW. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets.Bioinformatics. 2016; 32: 605-7.
[31] Kang DD, Li F, Kirton E, Thomas A, Wang Z. MetaBAT 2: An adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies.PeerJ. 2019; 7: e7359.
[32] Olm MR, Brown CT, Brooks B, Banfield JF. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication.ISME J. 2017; 11: 2864-8.
[33] Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes.Genome Res. 2015; 25: 1043-55.
[34] Stewart RD, Auffret MD, Warr A, Walker AW, Roehe R, Watson M. Compendium of 4,941 rumen metagenome-assembled genomes for rumen microbiome biology and enzyme discovery.Nat Biotechnol. 2019; 37: 953-61.
[35] Stewart RD, Auffret MD, Snelling TJ, Roehe R, Watson M. MAGpy: a reproducible pipeline for the downstream analysis of metagenome-assembled genomes (MAGs).Bioinformatics. 2019; 35: 2150-2.
[36] Asnicar F, Thomas AM, Beghini F, Mengoni C, Manara S, Manghi P, et al. Precise phylogenetic analysis of microbial isolates and genomes from metagenomes using PhyloPhlAn 3.0.Nat Commun. 2020; 11: 2500.
[37] Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation.Nucleic Acids Res. 2021; 49: 293-6.
[38] Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification.BMC Bioinformatics. 2010; 11: 119.
[39] Seemann T. Prokka: rapid prokaryotic genome annotation.Bioinformatics. 2014; 30: 2068-9.
[40] Uritskiy GV, DiRuggiero J, Taylor J. MetaWRAP-a flexible pipeline for genome-resolved metagenomic data analysis.Microbiome. 2018; 6: 158.
[41] Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013.Nucleic Acids Res. 2014; 42: 490-5.
[42] Zhang H, Tanner Y, Huang L, Sarah E, Wu P, Yang Z, et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation.Nucleic Acids Res. 2018; 46: 95-101.
[43] Busk PK, Pilgaard B, Lezyk MJ, Meyer AS, Lange L. Homology to peptide pattern for annotation of carbohydrate-active enzymes and prediction of function.BMC Bioinformatics. 2017; 18: 214.
[44] Buchfink B, Reuter K, Drost HG. Sensitive protein alignments at tree-of-life scale using DIAMOND.Nat Methods. 2021; 18: 366-8.
[45] Huson DH, Beier S, Flade I, Górska A, EI-Hadidi M, Mitra S, et al. MEGAN community edition - interactive exploration and analysis of large-scale microbiome sequencing data.PLoS Comput Biol. 2016; 12: e1004957.
[46] Geng A, Cheng Y, Wang Y, Zhu D, Le Y, Wu J, et al. Transcriptome analysis of the digestive system of a wood-feeding termite (Coptotermes formosanus) revealed a unique mechanism for effective biomass degradation.Biotechnol Biofuels. 2018; 11: 24.
[47] Shallom D, Shoham Y. Microbial hemicellulases.Curr Opin Microbiol. 2003; 6: 219-28.
[48] Dutta S, Wu KCW. Enzymatic breakdown of biomass: enzyme active sites, immobilization, and biofuel production.Green Chem. 2014; 16: 4615-26.
[49] Calderón-Cortés N, Quesada M, Watanabe H, Cano-Camacho H, Oyama K. Endogenous plant cell wall digestion: a key mechanism in insect evolution.Annu Rev Ecol Evol S. 2012; 43: 45-71.
[50] Kojima W. Attraction to carbon dioxide from feeding resources and conspecific neighbours in larvae of the rhinoceros beetle Trypoxylus dichotomus.PLoS One. 2015; 10: e0141733.
[51] Rajeswari G, Jacob S, Chandel AK, Kumar V. Unlocking the potential of insect and ruminant host symbionts for recycling of lignocellulosic carbon with a biorefinery approach: a review.Microb Cell Fact. 2021; 20: 107.
[52] Vallet-Gely I, Lemaitre B, Boccard F. Bacterial strategies to overcome insect defences.Nat Rev Microbiol. 2008; 6: 302-13.
[53] Su L, Yang L, Huang S, Li Y, Su X, Wang F, et al. Variation in the gut microbiota of termites (Tsaitermes ampliceps) against different diets.Appl Biochem Biotech. 2017; 181: 32-47.
[54] Hess M, Sczyrba A, Egan R, Kim TW, Chokhawala H, Schroth G, et al. Metagenomic discovery of biomass-degrading genes and genomes from cow rumen.Science. 2011; 331: 463-7.
[55] Gharechahi J, Salekdeh GH. A metagenomic analysis of the camel rumen's microbiome identifies the major microbes responsible for lignocellulose degradation and fermentation.Biotechnol Biofuels. 2018; 11: 216.
[56] Poulsen M, Hu H, Li C, Chen Z, Xu L, Otani S, et al. Complementary symbiont contributions to plant decomposition in a fungus-farming termite.P Natl Acad Sci USA. 2014; 111: 14500-5.
[57] Ni J, Tokuda G. Lignocellulose-degrading enzymes from termites and their symbiotic microbiota.Biotechnol Adv. 2013; 31: 838-50.
[58] Bredon M, Dittmer J, Noël C, Moumen B, Bouchon D. Lignocellulose degradation at the holobiont level: teamwork in a keystone soil invertebrate.Microbiome. 2018; 6: 162.
[59] Galbe M, Wallberg O. Pretreatment for biorefineries: a review of common methods for efficient utilisation of lignocellulosic materials.Biotechnol Biofuels. 2019; 12: 294.
[60] Chandra RP, Chu Q, Hu J, Zhong N, Lin M, Lee JS, et al. The influence of lignin on steam pretreatment and mechanical pulping of poplar to achieve high sugar recovery and ease of enzymatic hydrolysis.Bioresource Technol. 2016; 199: 135-41.
[61] Rojas OJ, Hubbe MA. The dispersion science of papermaking.J Disper Sci Technol. 2005; 25: 713-32.
[62] Gupta R, Mehta G, Khasa YP, Kuhad RC. Fungal delignification of lignocellulosic biomass improves the saccharification of cellulosics.Biodegradation. 2011; 22: 797-804.
[63] Svartström O, Alneberg J, Terrapon N, Lombard V, De Bruijn I, Malmsten J, et al. Ninety-nine de novo assembled genomes from the moose (Alces alces) rumen microbiome provide new insights into microbial plant biomass degradation.ISME J. 2017; 11: 2538-51.
[64] Jami E, Israel A, Kotser A, Mizrahi I. Exploring the bovine rumen bacterial community from birth to adulthood.ISME J. 2013; 7: 1069-79.
[65] Kim MS, Roh SW, Bae JW. Bacteroides faecis sp. nov., isolated from human faeces.Int J Syst Evol Micr. 2010; 60: 2572-6.
[66] Taillefer M, Arntzen M, Henrissat B, Pope PB, Larsbrink J. Proteomic dissection of the cellulolytic machineries used by soil-dwelling bacteroidetes.mSystems. 2018; 3: e00240-18.
[67] Zhang K, Li W, Wang Y, Zheng Y, Tan F, Ma X, et al. Processive degradation of crystalline cellulose by a multimodular endoglucanase via a wirewalking mode.Biomacromolecules. 2018; 19: 1686-96.
[68] Zhang J, Li Y, Zheng H, Fan Y, Hou H. Direct degradation of cellulosic biomass to bio-hydrogen from a newly isolated strain Clostridium sartagoformeFZ11.Bioresource Technol. 2015; 192: 60-7.
[69] Koeck DE, Hahnke S, Zverlov VV. Herbinix luporum sp. nov., a thermophilic cellulose-degrading bacterium isolated from a thermophilic biogas reactor.Int J Syst Evol Micr. 2016; 66: 4132-7.
[70] Ze X, Duncan SH, Louis P, Flint HJ. Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon.ISME J. 2012; 6: 1535-43.