This paper verifies the model of high-static-low-dynamic stiffness (HSLDS) for seismic isolation based on an experiment. Seismic isolation is widely used in several countries. Moreover, the number of seismically isolated buildings has rapidly increased in these few decades. Seismic isolation extends a natural period of a building and decreases the absolute acceleration to re-duce a seismic force. However, as there is a trade-off between displacement and absolute acceleration, it might result in the maximum displacement be-yond an allowable range. HSLDS is nonlinear, and its restoring force can be approximated cube of a displacement. Thus, HSLDS applies a large restoring force for significant displacement, and the force is small for small perturbation around an equilibrium position. To improve the control performance of seismic isolation for displacement, we apply HSLDS for seismic isolation. This paper conducts an experiment and compares the results with a time-history analysis to verify a numerical model of HSLDS