[1] KRAAIJENHOF J M, HOVINGH G K, STROES E S G, et al. The iterative lipid impact on inflammation in atherosclerosis [J]. Curr Opin Lipidol, 2021, 32(5): 286-292. doi:10.1097/MOL.0000000000000779.
[2] BARRETT T J. Macrophages in Atherosclerosis Regression [J]. Arterioscler Thromb Vasc Biol, 2020, 40(1): 20-33. doi:10.1161/ATVBAHA.119.312802.
[3] ARBA F, VIT F, NESI M, et al. Carotid revascularization and cognitive impairment: the neglected role of cerebral small vessel disease [J]. Neurol Sci, 2021, doi:10.1007/s10072-021-05629-w.
[4] LEE H, PARK K S, JEON Y J, et al. Lipoprotein(a) and subclinical coronary atherosclerosis in asymptomatic individuals [J]. Atherosclerosis, 2021, doi:10.1016/j.atherosclerosis.2021.09.027.
[5] ARNLOV J, SANG Y, BALLEW S H, et al. Endothelial dysfunction and the risk of heart failure in a community-based study: the Multi-Ethnic Study of Atherosclerosis [J]. ESC Heart Fail, 2020, doi:10.1002/ehf2.13054.
[6] JI E, LEE S. Antibody-Based Therapeutics for Atherosclerosis and Cardiovascular Diseases [J]. Int J Mol Sci, 2021, 22(11): doi:10.3390/ijms22115770.
[7] MURY P, CHIRICO E N, MURA M, et al. Oxidative Stress and Inflammation, Key Targets of Atherosclerotic Plaque Progression and Vulnerability: Potential Impact of Physical Activity [J]. Sports Med, 2018, 48(12): 2725-2741. doi:10.1007/s40279-018-0996-z.
[8] MONTEZANO A C, TOUYZ R M. Reactive oxygen species and endothelial function--role of nitric oxide synthase uncoupling and Nox family nicotinamide adenine dinucleotide phosphate oxidases [J]. Basic Clin Pharmacol Toxicol, 2012, 110(1): 87-94. doi:10.1111/j.1742-7843.2011.00785.x.
[9] TOUALBI L A, ADNANE M, ABDERREZAK K, et al. Oxidative stress accelerates the carotid atherosclerosis process in patients with chronic kidney disease [J]. Arch Med Sci Atheroscler Dis, 2020, 5(e245-e254. doi:10.5114/amsad.2020.98945.
[10] GRYSZCZYNSKA B, FORMANOWICZ D, BUDZYN M, et al. Advanced Oxidation Protein Products and Carbonylated Proteins as Biomarkers of Oxidative Stress in Selected Atherosclerosis-Mediated Diseases [J]. Biomed Res Int, 2017, 2017(4975264. doi:10.1155/2017/4975264.
[11] HE F, LI J, LIU Z, et al. Redox Mechanism of Reactive Oxygen Species in Exercise [J]. Front Physiol, 2016, 7(486. doi:10.3389/fphys.2016.00486.
[12] JI C, PAN Y, XU S, et al. Propolis ameliorates restenosis in hypercholesterolemia rabbits with carotid balloon injury by inhibiting lipid accumulation, oxidative stress, and TLR4/NF-kappaB pathway [J]. J Food Biochem, 2021, 45(4): e13577. doi:10.1111/jfbc.13577.
[13] ZHANG F, FENG J, ZHANG J, et al. Quercetin modulates AMPK/SIRT1/NF-kappaB signaling to inhibit inflammatory/oxidative stress responses in diabetic high fat diet-induced atherosclerosis in the rat carotid artery [J]. Exp Ther Med, 2020, 20(6): 280. doi:10.3892/etm.2020.9410.
[14] LI J M, SHAH A M. Endothelial cell superoxide generation: regulation and relevance for cardiovascular pathophysiology [J]. American Journal of Physiology-Regulatory Integrative and Comparative Physiology, 2004, 287(5): R1014-R1030. doi:10.1152/ajpregu.00124.2004.
[15] ZHANG D, SUN J X, CHANG S Q, et al. Protective effect of 18 beta-glycyrrhetinic acid against H2O2-induced injury in Schwann cells based on network pharmacology and experimental validation [J]. Experimental and Therapeutic Medicine, 2021, 22(5): doi:ARTN 1241
10.3892/etm.2021.10676.
[16] ZHANG D, YANG B, CHANG S Q, et al. Protective effect of paeoniflorin on H2O2 induced Schwann cells injury based on network pharmacology and experimental validation [J]. Chinese Journal of Natural Medicines, 2021, 19(2): 90-99. doi:10.1016/S1875-5364(21)60010-9.
[17] KIRII H, NIWA T, YAMADA Y, et al. Lack of interleukin-1beta decreases the severity of atherosclerosis in ApoE-deficient mice [J]. Arterioscler Thromb Vasc Biol, 2003, 23(4): 656-60. doi:10.1161/01.ATV.0000064374.15232.C3.
[18] SHIMOKAWA H, ITO A, FUKUMOTO Y, et al. Chronic treatment with interleukin-1 beta induces coronary intimal lesions and vasospastic responses in pigs in vivo. The role of platelet-derived growth factor [J]. J Clin Invest, 1996, 97(3): 769-76. doi:10.1172/JCI118476.
[19] CAGNIN S, BISCUOLA M, PATUZZO C, et al. Reconstruction and functional analysis of altered molecular pathways in human atherosclerotic arteries [J]. BMC Genomics, 2009, 10(13. doi:10.1186/1471-2164-10-13.
[20] CHANG T T, YANG H Y, CHEN C, et al. CCL4 Inhibition in Atherosclerosis: Effects on Plaque Stability, Endothelial Cell Adhesiveness, and Macrophages Activation [J]. Int J Mol Sci, 2020, 21(18): doi:10.3390/ijms21186567.
[21] MONTECUCCO F, LENGLET S, GAYET-AGERON A, et al. Systemic and intraplaque mediators of inflammation are increased in patients symptomatic for ischemic stroke [J]. Stroke, 2010, 41(7): 1394-404. doi:10.1161/STROKEAHA.110.578369.
[22] KOMISSAROV A, POTASHNIKOVA D, FREEMAN M L, et al. Driving T cells to human atherosclerotic plaques: CCL3/CCR5 and CX3CL1/CX3CR1 migration axes [J]. Eur J Immunol, 2021, 51(7): 1857-1859. doi:10.1002/eji.202049004.
[23] MUNJAL A, KHANDIA R. Atherosclerosis: orchestrating cells and biomolecules involved in its activation and inhibition [J]. Adv Protein Chem Struct Biol, 2020, 120(85-122. doi:10.1016/bs.apcsb.2019.11.002.
[24] BAI H L, LU Z F, ZHAO J J, et al. Microarray profiling analysis and validation of novel long noncoding RNAs and mRNAs as potential biomarkers and their functions in atherosclerosis [J]. Physiological Genomics, 2019, 51(12): 644-656. doi:10.1152/physiolgenomics.00077.2019.
[25] KRAUSGRUBER T, BLAZEK K, SMALLIE T, et al. IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses [J]. Nat Immunol, 2011, 12(3): 231-8. doi:10.1038/ni.1990.
[26] SENEVIRATNE A N, EDSFELDT A, COLE J E, et al. Interferon Regulatory Factor 5 Controls Necrotic Core Formation in Atherosclerotic Lesions by Impairing Efferocytosis [J]. Circulation, 2017, 136(12): 1140-1154. doi:10.1161/CIRCULATIONAHA.117.027844.
[27] POSADAS-SANCHEZ R, CARDOSO-SALDANA G, FRAGOSO J M, et al. Interferon Regulatory Factor 5 (IRF5) Gene Haplotypes Are Associated with Premature Coronary Artery Disease. Association of the IRF5 Polymorphisms with Cardiometabolic Parameters. The Genetics of Atherosclerotic Disease (GEA) Mexican Study [J]. Biomolecules, 2021, 11(3): doi:10.3390/biom11030443.
[28] GAUBATZ J W, BALLANTYNE C M, WASSERMAN B A, et al. Association of circulating matrix metalloproteinases with carotid artery characteristics: the Atherosclerosis Risk in Communities Carotid MRI Study [J]. Arterioscler Thromb Vasc Biol, 2010, 30(5): 1034-42. doi:10.1161/ATVBAHA.109.195370.
[29] POLONSKAYA Y V, KASHTANOVA E V, MURASHOV I S, et al. Association of Matrix Metalloproteinases with Coronary Artery Calcification in Patients with CHD [J]. J Pers Med, 2021, 11(6): doi:10.3390/jpm11060506.
[30] YU G C, WANG L G, HAN Y Y, et al. clusterProfiler: an R Package for Comparing Biological Themes Among Gene Clusters [J]. Omics-a Journal of Integrative Biology, 2012, 16(5): 284-287. doi:10.1089/omi.2011.0118.
[31] GENE ONTOLOGY C. The Gene Ontology (GO) project in 2006 [J]. Nucleic Acids Res, 2006, 34(Database issue): D322-6. doi:10.1093/nar/gkj021.
[32] ALTERMANN E, KLAENHAMMER T R. PathwayVoyager: pathway mapping using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database [J]. Bmc Genomics, 2005, 6(doi:Artn 60
10.1186/1471-2164-6-60.
[33] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method [J]. Methods, 2001, 25(4): 402-408. doi:10.1006/meth.2001.1262.