Screening of a B. rapa core collection
As a first objective, we investigated whether there was intraspecific variation for HR-like cell death in our B. rapa core collection. Out of the whole collection, we screened a subset of 56 accessions representing the collection geographical and morphological diversity (Additional file 2: Supplementary Table S1). Plants were treated with P. brassicae egg wash, which was previously reported as a reliable egg-mimicking treatment in B. nigra [35]. The main phenotypic diversity in HR-like response among the B. rapa accessions was limited to variation in cell death size (Additional file 1: Supplementary Fig. S1, Additional file 2: Supplementary Table S2). Egg wash induced a cell death on most of the accessions which appeared as necrotic black/dark spots of varying size on the leaf abaxial side (score 1-2). However, the spots never developed into the fully expanded and brown necrotic tissue, also visible on the adaxial side (score 3) (Additional file 1: Supplementary Fig. S1a). Such a strong necrosis was only observed in the B. nigra accession included as positive control (Additional file 1: Supplementary Fig. S1b). Nevertheless, we found differences in HR-like cell death between B. rapa accessions (Kruskal-Wallis: χ258 = 141.71, P <0.001). Six accessions, i.e. CC-106, FT-086, MIZ-019, R500, R-o-18 and VT-089, showed no cell death (score 0) in all biological replicates (Additional file 1: Supplementary Fig. S1b). Most of the accessions developed only a weak response, with a within-accession variation between individual plants ranging from no cell death (score 0) to small dark necrotic spots (score 1). At the other end of the phenotypic distribution, twelve accessions developed an HR-like cell death of score 2 in most of the biological replicates (i.e. BRO-127, ZCT, PC-184, IMB211, L58, PC-078, CC-114, CC-048, CC-168, CC-050, CC-Z16, CC-058). A specific morphotype was not associated with HR-like cell death as most of the major crop types (Pak choi, turnip, oil types) were found at both extremes of the phenotypic distribution (Additional file 1: Supplementary Fig. S1b). The only exception were the Chinese cabbage (CC) accessions, of which 8 out of 14 developed an HR-like cell death with large black/dark spots (score 2) on most of the biological replicates. Genetic heterogeneity of accessions appeared to be not associated with cell death variation as heterogeneous accessions and homogenous inbred lines and DH lines were found on both side of the phenotypic distribution.
Overall, we found statistical differences in HR-like cell death (Dunn Test, P <0.01) between the accessions that showed no cell death (score 0) and the accessions that developed large dark necrotic spots (score 2) upon egg wash treatment (Additional file 2: Supplementary Table S2). We then selected ten accessions either showing no response (CC-106, R-o-18, R500, SO-040) or an HR-like cell death of score 2 (BRO-030, BRO-127, CC-AO3, IMB211, CC-168, L58) for a further evaluation of their cell death phenotype. These accessions were selected based on specific criteria (see Material and Methods), and also because they were available as homozygous lines; being either inbred due to repeated selfing (self-compatible accessions) or previously used to generate homozygous DH lines (self-incompatible accessions).
Image-based phenotyping of HR-like cell death size on selected B. rapa homozygous lines
The selected B. rapa homozygous lines (inbred and DH lines) were re-evaluated to assess the robustness of their HR-like cell death phenotype with the aim to identify ideal parental lines to generate biparental mapping populations. Plants were treated with both P. brassicae egg clutches (10-20 eggs) and egg wash droplets to compare to which extent the egg wash could mimic the HR-like cell death induced by eggs. Further, we measured HR-like cell death size as quantitative trait using an image-based phenotyping protocol (Additional file 1: Supplementary Fig. S2-S3). Image analysis confirmed the differences in HR-like cell death between the selected accessions (Fig. 1, Additional file 2: Supplementary Table S3). Overall, we found differences in mean cell death sizes in response to both eggs (ANOVA: F74 = 8.55, P < 0.001) and egg wash (ANOVA: F74 = 15.88, P < 0.001). Accessions that developed the smallest HR-like response (CC-106, R-o-18, R500) were statistically different in cell death size from the ones with largest HR-like response (IMB211, L58) for both eggs and egg wash (Tukey`s HSD, P < 0.01). Overall, accessions IMB211 and L58 showed the largest cell death size for both treatments (Fig. 1). In fact, mean cell death size induced by either eggs or egg wash were similar for IMB211 (1.15 and 1.24 mm2, respectively) and L58 (1.26 and 1.33 mm2, respectively). In contrast, accessions CC-AO3, CC-168 and SO-040 showed a cell death size induced by eggs that was two to three times larger than the response induced by egg wash. CC-106 and R-o-18 showed the smallest mean cell death underneath the eggs (0.08 and 0.24 mm2, respectively), in contrast to the total absence of cell death upon egg wash treatment observed in the germplasm screening. Overall, the two treatments showed limited correlation across the ten accessions (Pearson’s r = 0.55, P < 0.001). The broad-sense heritability (H2) was slightly lower for cell death size induced by eggs (0.47) than by egg wash (0.64) (Additional file 2: Supplementary Table S3).
In summary, accessions with a small/intermediate HR-like response showed a larger cell death size under eggs compared to egg wash, while the overall ranking was similar. Thus, we concluded that using egg deposition worked better than egg wash to screen for HR-like cell death in order to not underestimate the cell death induced by low responsive B. rapa accessions. Overall, IMB211 and L58 were confirmed as lines with a strong HR-like cell death while CC-106, R-o-18, R500 confirmed to be lines with a weak cell death, validating the results of the germplasm screening. Out of these accessions, L58 and R-o-18 represented ideal candidates for crossings because of their self-compatibility, similar flowering time, and leaf size/shape. Thus, we used the L58 (♀) x R-o-18 (♂) RIL population that was previously generated by Bagheri et al. [63] to pursue QTL linkage mapping.
Phenotypic analysis and QTL mapping in a RIL population
The RIL population L58 x R-o-18 consisting of 160 lines (F10) was used to identify QTLs underlying P. brassicae egg-induced HR-like cell death. We generated a new linkage map combining markers from previous studies (Additional file 2: Supplementary Table S4-S5) [63, 64]. The final genetic map consisted of 485 loci and covered a total of 1154.4 cM, with a mean density of 2.38 cM (Additional file 1: Supplementary Fig. S4, Additional file 2: Supplementary Table S6-S7). Image-based phenotyping of egg-induced cell death from three experiments was used to estimate best linear unbiased estimators (BLUEs) of cell death size for each parental and RIL genotype. Overall, the parents R-o-18 and L58 showed BLUE values of 0.49 (SD = 0.4) and 1.53 (SD = 0.42) mm2, respectively (Fig. 2, Table 1). Their within-accession variation in HR-like cell death size, i.e. their phenotypic range, was larger than what we observed in previous germplasm evaluations, thus resulting in a smaller difference in mean cell death size between the two parents. The RILs showed an approximate normal distribution of cell death size with a mean BLUE value of 0.77 (SD = 0.51) mm2 (Fig. 2, Table 1). The RILs phenotypic distribution was skewed towards the R-o-18 phenotypic value and only seven RILs developed a cell death size larger than L58. The broad-sense heritability across the three experiments was similar to what was previously observed for egg-induced cell death size (H2 = 0.49).
A total of three QTLs associated with HR-like cell death size were identified on three B. rapa chromosomes and they were named P. brassicae egg-induced cell death (Pbc) (Fig. 3a, Table 2, Additional file 1: Supplementary Fig. S5). First, phenotypic data (BLUEs) were analyzed using single-QTL models, resulting in the identification of two QTLs, i.e. Pbc1 on chromosome A02 (LOD 5.63) and Pbc3 on chromosome A06 (LOD 4.15). Additionally, multi-QTL mapping (MQM) detected another QTL, Pbc2, on chromosome A03 (LOD 3.33). Two-QTL models revealed absence of epistatic interactions from any pairwise comparison among Pbc1-3, and weak additive effects between Pbc1:Pbc2 and Pbc1:Pbc3 (Additional file 1: Supplementary Fig. S6). Pbc1 explained 17.9% of the additive phenotypic variance, with BrID11121 as top marker (85.4 cM) and a 1.5-LOD confidence interval spanning about 27cM between markers 899118|9904922 and BrID11907 (Table 2). The minor QTLs Pbc2 and Pbc3 explained a smaller proportion of the additive phenotypic variance, 6.35% and 7.32% respectively, with BrID90099 (129.2 cM) and BrID90095 (63.9 cM) as respective top markers (Table 2). Pbc1 was the only QTL with a 1.5 LOD confidence interval lying entirely above the LOD significance threshold (Fig. 3a). As the RIL phenotypic distribution was skewed toward the R-o-18 values, we expected L58 alleles contributing to a larger cell death size for all QTLs. Interestingly, this was true only for Pbc1 which showed opposite effect size compared to Pbc2 and Pbc3 (Fig. 3b). In fact, the allele of L58 contributed to an increase in HR-like size of 0.45 mm2 for Pbc1, while the allele of R-o-18 determined an increase in HR-like of 0.27 mm2 for Pbc2 and 0.28 mm2 Pbc3 (Table 2).
Identification of candidate genes underlying the QTLs
We investigated the genomic locations of the three QTLs for potential candidate genes associated with HR-like cell death using the B. rapa reference genome cv. Chiifu (v3.0). We searched for annotated genes that encode for cell surface receptors (PRRs), intracellular receptors (NLRs), or that are involved in general plant defense mechanisms, such as ROS production and cell death (Additional file 2: Supplementary Table S8-10). The QTL Pbc1 showed the largest effect with the allele of the L58 parent contributing to a large cell death and it was located at the interval 8.65-25.29 Mb (± 1.5 LOD) on chromosome A02. This region contains 2012 annotated genes, of which 69 are related to the plant immunity and defense (Additional file 2: Supplementary Table S8). Among them, we found 14 cell surface receptors (of both the RLK and RLP type) and 19 intracellular TIR-NBS-LRR (TNL) receptors. Sixteen of the TNLs are closely located in three clusters, at the intervals 12.47–12.55 Mb, 21.64–21.73 Mb and 22.68–22.99 Mb. Moreover, Pbc1 also includes B. rapa homologs to three RLKs previously found to be upregulated upon oviposition in A. thaliana [24]: i.e., BraA02g017190.3C homolog of a LRKL domain-kinase protein (AT1G66880), BraA02g022170.3C and BraA02g022180.3C homologs of NEMATODE-INDUCED LRR-RLK 1 (NILR1, AT1G74360) and BraA02g033550.3C and BraA02g033570.3C, homologs of PBS1-LIKE 19 (AT5G47070). Further, Pbc1 region includes genes involved in mediating cell death processes, such as BraA02g032910.3C and BraA02g032940.3C that are both homologs of A. thaliana ACCELERATED CELL DEATH 11 (ACD11), and BraA02g033670.3C, a homolog of BAX-INHIBITOR 1 (BI-1, AT5G47120).
Regarding the two minor QTLs, Pbc2 was located in the interval 25.34-38.15 Mb on A03 (± 1.5 LOD) and included 1594 genes in total, of which 49 being plant immunity-related genes (Additional file 2: Supplementary Table S9). Within Pbc2 we found different types of PRRs such as a cluster of 15 cysteine-rich RLKs (CRKs) at the interval 25.91-26.32 Mb and BraA03g059300.3C, homolog of L-TYPE LECTIN RECEPTOR KINASE I.9 (LecRK-I.9). In this region we found also NLRs, specifically a cluster of four TIR-NBS-LRR at the interval 25.52-25.56 Mb. Further, this region included also BraA03g053480.3C and BraA03g057870.3C, homologs of two known regulators of plant immunity, i.e. SUPPRESSOR-OF-NPR1 CONSTITUTIVE 4 (SNC4) and BRI1-ASSOCIATED RECEPTOR KINASE (BAK1), respectively, and two homologs of putative RESPIRATORY BURST OXIDASE HOMOLOGUE G (RbohG) genes. The third QTL, Pbc3, was located between 6.77 and 16.13 Mb on A06 (± 1.5 LOD). This region included a total of 2292 genes, of which 28 plant defense-related genes (Additional file 2: Supplementary Table S10). Within Pbc3 we found homologs of RbohD and RbohJ, different types of RLKs, i.e. homologs to two WALL-ASSOCIATED RECEPTOR KINASES 1 (WAK1, AT1G21250) and 2 (WAK2, AT1G21270), and, interestingly, a cluster of four L-type LecRKs including LecRK-I.1, that was recently associated to P. brassicae egg extract-induced cell death in A. thaliana [46].
Given that Pbc3 appeared to overlap with one of the two loci identified in A. thaliana by Groux et al. [46], we investigated the syntenic relationship between Pbc1-3 regions and A. thaliana genome. Pbc1 was syntenic to regions on A. thaliana chromosomes 1, on the top of chromosome 4 and on middle of chromosome 5 (Additional file 1: Supplementary Fig. S7). Pbc2, which was located to the bottom of chromosome A03, showed synteny to the bottom half of A. thaliana chromosome 4. Pbc3, which is located on the center of chromosome A06, was syntenic to regions on both A. thaliana chromosomes 3 and 5. Indeed, Pbc3 was syntenic to the region of A. thaliana chromosome 3 that included LecRK-I.1, candidate gene associated with egg extract-induced cell death [46]. Overall, Pbc1 and Pbc2 represented novel loci mediating HR-like cell death as they did not show synteny to the two loci previously identified in A. thaliana.