[1] Ali S, Shafique O, Mahmood T, Hanif MA, Ahmed I, Khan BA. A review about perspectives of nanotechnology in agriculture. Pak J Agric Sci. 2018; 30(2): 116-121. doi: 10.17582/journal.pjar/2018/31.2.116.121
[2] Chowdhury D, Bharadwaj A, Sehgal VK. Mega-environment concept in agriculture: a review. Int J Curr Microbiol App Sci. 2019; 8(1): 2147-2152. doi: 10.20546/ijcmas.2019.801.224
[3] Leakey ADB, Ferguson JN, Pignon CP, Wu A, Jin Z, Hammer GL, Lobell, DB. Water use efficiency as a constraint and target for improving the resilience and productivity of C3 and C4 crops. Annu Rev Plant Biol. 2019; 70(1): 781-808. doi: 10.1146/annurev-arplant-042817-040305
[4] Lowenberg-DeBoer J, Erickson B. Setting the record straight on precision agriculture adoption. Agr J. 2019; 111: 1552-1569. doi:10.2134/agronj2018.12.0779
[5] Pandey S, Shrivastava A, Vijay R, Bhandari S. A review on smart irrigation and crop prediction system. International Conference on Sustainable Computing in Science, Technology & Management (SUSCOM-2019). 2019 Jun 14 [Cited 2020 Mar 3]. Available from: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3358108
[6] Saiz-Rubio V, Rovira-Más F. From smart farming towards Agriculture 5.0: a review on crop data management. Agron, 2020; 10(2): 207. doi: 10.3390/agronomy10020207
[7] Singh N, Singh AN. Odysseys of agriculture sensors: Current challenges and forthcoming prospects. Comput Electron Agr. 2020; 171: 1-14. doi: 10.1016/j.compag.2020.105328
[8] Roberts DP, Mattoo AK. Sustainable crop production systems and human nutrition. Front Sustain Food Syst. 2019; 3: 72. doi: 10.3389/fsufs.2019.00072
[9] Raman R. The impact of Genetically Modified (GM) crops in modern agriculture: A review. GM Crop Food. 2017; 8(4): 195-208. doi: 10.1080/21645698.2017.1413522
[10] Small CC, Degenhardt D. Plant growth regulators for enhancing revegetation success in reclamation: a review. Ecol Eng. 2018; 118: 43-51. doi: 10.1016/j.ecoleng.2018.04.010
[11] Harsimrat KB, Kaur M. Role of plant growth regulators in improving fruit set, quality and yield of fruit crops: a review. J Hort Sc Biotec. 2020; 95(2): 137-146, doi: 10.1080/14620316.2019.1660591
[12] Toungos MD. Plant growth substances in crop production: a review. Int J In Agric Biol Res. 2018; 6(3): 1-8.
[13] Pellegrini P, Fernández RJ. Crop intensification, land use, and on-farm energy-use efficiency during the worldwide spread of the green revolution. Proc Natl Acad Sci USA. 2018; 115(10): 2335-2340. doi: 10.1073/pnas.1717072115
[14] Besada H, Sewankambo N. (eds). Climate change in Africa: adaptation, mitigation and governance challenges. 2010 Nov 2009 [Cited 2020 Mar 11]. Available from: https://www.cigionline.org/sites/default/files/climate_change_in_africa_3.pdf.
[15] IPCC: Climate Change 2014. Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change - Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.). IPCC, Geneva, Switzerland, 151 pp. Available at: https://archive.ipcc.ch/report/ar5/syr/. Access in April 25, 2020.
[16] Tamiru L, Fekadu H. 2019. Effects of climate change variability on agricultural productivity. Int J Environ Sci Nat Res. 2019; 17(1): 018555953. doi: 10.19080/IJESNR.2019.17.555953.
[17] Balogh JM, Jámbor A. The environmental impacts of agricultural trade: a systematic literature review. Sust. 2020; 12(3): 1-16. doi: 10.3390/su12031152
[18] Orr DJ, Pereira AM, Fonseca Pereira P, Pereira-Lima ÍA, Zsögön A, Araújo WL. Engineering photosynthesis: progress and perspectives. F1000Research. 2017; 6: 1891. doi: 10.12688/f1000research.12181.1
[19] van Iersel MW. Optimizing LED lighting in controlled environment agriculture. In: Gupta SD, Light emitting diodes for agriculture: Smart Lighting. Springer Nature Singapore Pte Ltd. 2017. pp. 59-80.
[20] Nowicka B, Ciura J, Szymańska R, Kruk J. Improving photosynthesis, plant productivity and abiotic stress tolerance - current trends and future perspectives. J Plant Physiol. 2018; 231: 415-433. doi: 10.1016/j.jplph.2018.10.022
[21] Kaiser E, Galvis VC, Armbruster U. Efficient photosynthesis in dynamic light environments: a chloroplast's perspective. Biochem J. 2019; 476(19): 2725-2741. doi: 10.1042/BCJ20190134
[22] Batista-Silva W, Fonseca-Pereira P, Martins AO, Zsögön A, Nunes-Nesi A, Araújo WL. Engineering improved photosynthesis in the era of synthetic biology. 2020; Plant Comm. 1, 100032. doi: 10.1016/j.xplc.2020.100032
[23] Singer SD, Soolanayakanahally RY, Foroud NA, Kroebel R. Biotechnological strategies for improved photosynthesis in a future of elevated atmospheric CO2. Planta. 2020; 251: 24. doi: 10.1007/s00425-019-03301-4
[24] Simkin AJ, López-Calcagno PE, Raines CA. Feeding the world: improving photosynthetic efficiency for sustainable crop production. J Exp Bot. 2019; 70(4): 1119-1140. doi:10.1093/jxb/ery445
[25] Goto E. Effects of light quality on growth of crop plants under artificial lighting. Env Cont Biol. 2003; 41: 121-132. doi: 10.2525/ecb1963.41.121
[26] Gómez C, Izzo LG. Increasing efficiency of crop production with LEDs. AIMS Agr Food. 2018; 3, 135-153. doi: 10.3934/agrfood.2018.2.135
[27] Hemming S. Use of natural and artificial light in horticulture - interaction of plant and technology. Acta Hortic. 2011; 907: 25-35. doi: 10.17660/ActaHortic.2011.907.1
[28] Bures S, Gavilan MU, Kotiranta S. Artificial lighting in agriculture. Especialistes en serveis per la producció editorial (SPE3). 2018.
[29] Companhia Nacional de Abastecimento (Conab). Safra Brasileira de Grãos. 2020 May 12 [Cited 2020 May 18]. Available from: https://portaldeinformacoes.conab.gov.br/
[30] Beck HE, Zimmermann NE, McVicar TR, Vergopolan N, Berg A, Wood EF. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci Data. 2018; 5: 180214. doi: 10.1038/sdata.2018.214
[31] Empresa Brasileira de Pesquisa Agropecuária - Embrapa. Manual de métodos de análise de solo. Embrapa: Rio de Janeiro, Brazil. 2017.
[32] Van der Plank JE. Plant Diseases: Epidemics and Control. Academic Press, New York. 1963.
[33] Simko I, Piepho H.-P. The area under the disease progress stairs: calculation, advantage, and application. Phyt. 2012; 102: 381-389. doi: 10.1094/PHYTO-07-11-0216
[34] Pearson K. The grammar of science. Londres, RU: Walter Scott, 1892.
[35] Chambers JM, Cleveland WS, Kleiner B, Tukey PA. Graphical methods for data analysis. Wadsworth and Brooks/Cole. 1983.
[36] Burke S. Missing values, outliers, robust statistics & non-parametric methods. LC-GC Eur Online Suppl Stat Data Ana. 2001; 2: 19-24. Corpus ID: 189801314
[37] Kwak SK, Kim JH. Statistical data preparation: management of missing values and outliers. Kor J Anest. 2017; 70(4): 407-411. doi: 10.4097/kjae.2017.70.4.407
[38] Figueiredo Filho DB, Silva JrJA. Desvendando os mistérios do coeficiente de correlação de Pearson (r). Rev Pol Hoje, 2009; 18(1): 115-146. doi: 10.11606/issn.2237-4485.lev.2014.132346
[39] Callegari-Jacques SM. Bioestatística: princípios e aplicações. Porto Alegre: Artemed, 2003.
[40] Kantolic AG, Slafer GA. Development and seed number in indeterminate soybean as affected by timing and duration of exposure to long photoperiods after flowering. Ann Bot. 2007; 99: 925-933. doi: 10.1093/aob/mcm033
[41] Wu TT, Li JY, Wu C-X, Sun S, Mao T-T, Jiang B-J, Hou W-S, Han T-Fu. Analysis of the independent- and interactive-photo-thermal effects on soybean flowering. J Integ Agr. 2015; 14(4): 622-632. doi: 10.1016/S2095-3119(14)60856-X
[42] Kantolic AG, Slafer GA. Photoperiod sensitivity after flowering and seed number determination in indeterminate soybean cultivars. Field Crops Res. 2001; 72(2): 109-118. doi: 10.1016/s0378-4290(01)00168-x
[43] Kantolic AG, Slafer GA. Reproductive development and yield components in indeterminate soybean as affected by post-flowering photoperiod. Field Crops Res. 2005; 93: 212-222. doi: 10.1016/j.fcr.2004.10.001
[44] Kantolic AG, Peralta GE, Slafer GA. Seed number responses to extended photoperiod and shading during reproductive stages in indeterminate soybean. Euro J Agron. 2013; 51: 91-100. doi: 10.1016/j.eja.2013.07.006
[45] Nico M, Mantese AI, Miralles DJ, Kantolic AG. Soybean fruit development and set at the node level under combined photoperiod and radiation conditions. J Exp Bot. 2016; 67(1): 365-377. doi: 10.1093/jxb/erv475
[46] Beyi MW. Plant photo morphogenesis. Int J Biol Phys Mat, 2018; 1(1): 104-118.
[47] Tripathi S, Hoang QTN, Han YJ, Kim JI. Regulation of photomorphogenic development by plant phytochromes. Int. J. Mol. Sci. 2019; 20: 6165. doi: 10.3390/ijms20246165
[48] Lymperopoulos P, Msanne J, Rabara R. Phytochrome and phytohormones: Working in tandem for plant growth and development. Front Plant Sci. 2018; 9: 1-14. doi: 10.3389/fpls.2018.01037
[49] Faizan M, Faraz A, Sami S, Siddiqui H, Yussuf M, Gruzska D, Hayat S. Role of strigolactones: Signalling and crosstalk with other phytohormones. Open Life Sc. 2020; 15(1): 217-228. doi: 10.1515/biol-2020-0022
[50] Ouzounis T, Rosenqvist E, Ottosen C-O. Spectral effects of artificial light on plant physiology and secondary metabolism: A review. HortScience. 2015; 50(8): 1128-1135. doi: 10.21273/HORTSCI.50.8.1128
[51] Thoma F, Somborn-Schulz A, Schlehuber D, Keuter V, Deerberg G. Effects of light on secondary metabolites in selected leafy greens: a review. Front Plant Sc. 2020; 11: 497. doi: 10.3389/fpls.2020.00497
[52] Bitew Y, Alemayehu M. Impact of crop production inputs on soil health: a review. Asian J Plant Sci. 2017; 16: 109-131. doi: 10.3923/ajps.2017.109.131
[53] Fageria NK, Moreira A. The role of mineral nutrition on root growth of crop plants. Adv Agron. 2011; 110(1): 251-331. doi: 10.1016/B978-0-12-385531-2.00004-9
[54] Joglekar AKB, Wood-Sichra U, Pardey PG. Pixelating crop production: consequences of methodological choices. PLoS ONE; 2019; 14(2): e0212281. doi: 10.1371/journal.pone.0212281
[55] Sihag J, Prakash DA. Review: importance of various modeling techniques in agriculture/crop production. In: Sihag, J.; Prakash, D. Soft computing: theories and applications. 2019. pp. 699-707. doi: 10.1007/978-981-13-0589-4_66
[56] Mulungu K, Ng’Ombe JN. Climate change impacts on sustainable maize production in Sub-Saharan Africa: a review. IntechOpen, 2019. doi: 10.5772/intechopen.90033
[57] Patle GT, Kumar M, Khanna M. Climate-smart water technologies for sustainable agriculture: a review. J Water Clim Change. 2019; jwc2019257. doi: 10.2166/wcc.2019.257
[58] Heino M, Guillaume JHA, Müller C, Iizumi T, Kummu M. A multi-model analysis of teleconnected crop yield variability in a range of cropping systems. Earth Syst Dynam. 2020; 11: 113-128. doi:10.5194/esd-11-113-2020
[59] Byerlee D, Stevenson J, Villoria N. Does intensification slow cropland expansion or encourage deforestation? Glob Food Sec. 2014; 3(2), 92-98. doi: 10.1016/j.gfs.2014.04.001
[60] Phalan B, Green R, Dicks L, Dotta G, Feniuk C, Lamb A, Strassburg BB. et al. How can higher-yield farming help to spare nature? Science. 2016; 351: 450-451. doi: 10.1126/science.aad0055
[61] Koch N, zu Ermgassen EKHJ, Wehkamp J, Oliveira Filho FJB, Schwerhoff G. Agricultural productivity and forest conservation: evidence from the Brazilian Amazon. Am J Agric Econ. 2019; 101(3): 919-940. doi: 10.1093/ajae/aay110
[62] Worldometers.org. Actual world population. 2020 Apr 07 [2020 Apr 07]. Available from: https://www.worldometers.info/br/
[63] Tilman D, Balzer C, Hill J, Befort BL. Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci USA; 2011; 108: 20260-20264. doi: 10.1073/pnas.1116437108