An, J., Huang, Y.-C., Xu, Q.-Z., Zhou, L.-J., Shang, Z.-F., Huang, B., Wang, Y., Liu, X.-D., Wu, D.-C., Zhou, P.-K., 2010. DNA-PKcs plays a dominant role in the regulation of H2AX phosphorylation in response to DNA damage and cell cycle progression. BMC Mol. Biol. 11, 18. https://doi.org/10.1186/1471-2199-11-18
SilMon. (2020, November 13). SilMon/Cell-Morphology-Notebook: v. 1.1 (Version v1.1). Zenodo. http://doi.org/10.5281/zenodo.4271745
Bartkova, J., Hořejší, Z., Koed, K., Krämer, A., Tort, F., Zieger, K., Guldberg, P., Sehested, M., Nesland, J.M., Lukas, C., Ørntoft, T., Lukas, J., Bartek, J., 2005. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434, 864–870. https://doi.org/10.1038/nature03482
Basu, A., Rojas, H., Banerjee, H., Cabrera, I.B., Perez, K.Y., De León, M., Casiano, C.A., 2012. Expression of the Stress Response Oncoprotein LEDGF/p75 in Human Cancer: A Study of 21 Tumor Types. PLoS ONE 7, e30132. https://doi.org/10.1371/journal.pone.0030132
Basu, A., Woods-Burnham, L., Ortiz, G., Rios-Colon, L., Figueroa, J., Albesa, R., Andrade, L.E., Mahler, M., Casiano, C.A., 2015. Specificity of antinuclear autoantibodies recognizing the dense fine speckled nuclear pattern: Preferential targeting of DFS70/LEDGFp75 over its interacting partner MeCP2. Clin. Immunol. 161, 241–250. https://doi.org/10.1016/j.clim.2015.07.014
Bhargavan, B., Fatma, N., Chhunchha, B., Singh, V., Kubo, E., Singh, D.P., 2012. LEDGF gene silencing impairs the tumorigenicity of prostate cancer DU145 cells by abating the expression of Hsp27 and activation of the Akt/ERK signaling pathway. Cell Death Dis. 3, e316. https://doi.org/10.1038/cddis.2012.57
Boggs, A.E., Vitolo, M.I., Whipple, R.A., Charpentier, M.S., Goloubeva, O.G., Ioffe, O.B., Tuttle, K.C., Slovic, J., Lu, Y., Mills, G.B., Martin, S.S., 2015. α-Tubulin Acetylation Elevated in Metastatic and Basal-like Breast Cancer Cells Promotes Microtentacle Formation, Adhesion, and Invasive Migration. Cancer Res. 75, 203–215. https://doi.org/10.1158/0008-5472.CAN-13-3563
Brown-Bryan, T.A., Leoh, L.S., Ganapathy, V., Pacheco, F.J., Mediavilla-Varela, M., Filippova, M., Linkhart, T.A., Gijsbers, R., Debyser, Z., Casiano, C.A., 2008. Alternative Splicing and Caspase-Mediated Cleavage Generate Antagonistic Variants of the Stress Oncoprotein LEDGF/p75. Mol. Cancer Res. 6, 1293–1307. https://doi.org/10.1158/1541-7786.MCR-08-0125
Daugaard, M., Baude, A., Fugger, K., Povlsen, L.K., Beck, H., Sørensen, C.S., Petersen, N.H.T., Sorensen, P.H.B., Lukas, C., Bartek, J., Lukas, J., Rohde, M., Jäättelä, M., 2012. LEDGF (p75) promotes DNA-end resection and homologous recombination. Nat. Struct. Mol. Biol. 19, 803–810. https://doi.org/10.1038/nsmb.2314
Daugaard, M., Kirkegaard-Sorensen, T., Ostenfeld, M.S., Aaboe, M., Hoyer-Hansen, M., Orntoft, T.F., Rohde, M., Jaattela, M., 2007. Lens Epithelium-Derived Growth Factor Is an Hsp70-2 Regulated Guardian of Lysosomal Stability in Human Cancer. Cancer Res. 67, 2559–2567. https://doi.org/10.1158/0008-5472.CAN-06-4121
Debyser, Z., Christ, F., De Rijck, J., Gijsbers, R., 2015. Host factors for retroviral integration site selection. Trends Biochem. Sci. 40, 108–116. https://doi.org/10.1016/j.tibs.2014.12.001
Densham, R.M., Garvin, A.J., Stone, H.R., Strachan, J., Baldock, R.A., Daza-Martin, M., Fletcher, A., Blair-Reid, S., Beesley, J., Johal, B., Pearl, L.H., Neely, R., Keep, N.H., Watts, F.Z., Morris, J.R., 2016. Human BRCA1–BARD1 ubiquitin ligase activity counteracts chromatin barriers to DNA resection. Nat. Struct. Mol. Biol. 23, 647–655. https://doi.org/10.1038/nsmb.3236
Fatma, N., Singh, D.P., Shinohara, T., Chylack, L.T., 2001. Transcriptional Regulation of the Antioxidant Protein 2 Gene, a Thiol-specific Antioxidant, by Lens Epithelium-derived Growth Factor to Protect Cells from Oxidative Stress. J. Biol. Chem. 276, 48899–48907. https://doi.org/10.1074/jbc.M100733200
Gruosso, T., Mieulet, V., Cardon, M., Bourachot, B., Kieffer, Y., Devun, F., Dubois, T., Dutreix, M., Vincent‐Salomon, A., Miller, K.M., Mechta‐Grigoriou, F., 2016. Chronic oxidative stress promotes H2 AX protein degradation and enhances chemosensitivity in breast cancer patients. EMBO Mol. Med. 8, 527–549. https://doi.org/10.15252/emmm.201505891
Huang, T., Myklebust, L.M., Kjarland, E., Gjertsen, B., Pendino, F., Bruserud, Ø., Døskeland, S., Lillehaug, J.R., 2007. LEDGF/p75 has increased expression in blasts from chemotherapy-resistant human acute myelogenic leukemia patients and protects leukemia cells from apoptosis in vitro. Mol. Cancer 6, 31. https://doi.org/10.1186/1476-4598-6-31
Ishihara, K., Fatma, N., Bhargavan, B., Chhunchha, B., Kubo, E., Dey, S., Takamura, Y., Kumar, A., Singh, D.P., 2012. Lens epithelium-derived growth factor deSumoylation by Sumo-specific protease-1 regulates its transcriptional activation of small heat shock protein and the cellular response: Senp-1 regulates LEDGF transcriptional activity. FEBS J. 279, 3048–3070. https://doi.org/10.1111/j.1742-4658.2012.08686.x
Kanu, N., Grönroos, E., Martinez, P., Burrell, R.A., Yi Goh, X., Bartkova, J., Maya-Mendoza, A., Mistrík, M., Rowan, A.J., Patel, H., Rabinowitz, A., East, P., Wilson, G., Santos, C.R., McGranahan, N., Gulati, S., Gerlinger, M., Birkbak, N.J., Joshi, T., Alexandrov, L.B., Stratton, M.R., Powles, T., Matthews, N., Bates, P.A., Stewart, A., Szallasi, Z., Larkin, J., Bartek, J., Swanton, C., 2015. SETD2 loss-of-function promotes renal cancer branched evolution through replication stress and impaired DNA repair. Oncogene 34, 5699–5708. https://doi.org/10.1038/onc.2015.24
Kim, S., Jin, H., Seo, H.-R., Lee, H.J., Lee, Y.-S., 2019. Regulating BRCA1 protein stability by cathepsin S-mediated ubiquitin degradation. Cell Death Differ. 26, 812–825. https://doi.org/10.1038/s41418-018-0153-0
Krum, S.A., Dalugdugan, E. de la R., Miranda-Carboni, G.A., Lane, T.F., 2010. BRCA1 Forms a Functional Complex with γ -H2AX as a Late Response to Genotoxic Stress. J. Nucleic Acids 2010, 1–9. https://doi.org/10.4061/2010/801594
Lebok, P., Öztürk, M., Heilenkötter, U., Jaenicke, F., Müller, V., Paluchowski, P., Geist, S., Wilke, C., Burandt, E., Lebeau, A., Wilczak, W., Krech, T., Simon, R., Sauter, G., Quaas, A., 2016. High levels of class III β-tubulin expression are associated with aggressive tumor features in breast cancer. Oncol. Lett. 11, 1987–1994. https://doi.org/10.3892/ol.2016.4206
Lee, C.-C., Cheng, Y.-C., Chang, C.-Y., Lin, C.-M., Chang, J.-Y., 2018. Alpha-tubulin acetyltransferase/MEC-17 regulates cancer cell migration and invasion through epithelial–mesenchymal transition suppression and cell polarity disruption. Sci. Rep. 8. https://doi.org/10.1038/s41598-018-35392-6
Leitz, J., Reuschenbach, M., Lohrey, C., Honegger, A., Accardi, R., Tommasino, M., Llano, M., von Knebel Doeberitz, M., Hoppe-Seyler, K., Hoppe-Seyler, F., 2014. Oncogenic Human Papillomaviruses Activate the Tumor-Associated Lens Epithelial-Derived Growth Factor (LEDGF) Gene. PLoS Pathog. 10, e1003957. https://doi.org/10.1371/journal.ppat.1003957
Levy-Barda, A., Lerentha, Y., Davis, A.J., Chung, Y.M., Essers, J., Shao, Z., Vliet, N. van, Che, D.J., Hu, M.C.-T., Kanaar, R., Ziv, Y., Shiloh, Y., 2011. Involvement of the nuclear proteasome activator PA28γ in the cellular response to DNA doublestrand break. Cell Cycle. https://doi.org/10.4161/ cc.10.24.18642
Li, L., Wang, Y., 2017. Cross-talk between the H3K36me3 and H4K16ac histone epigenetic marks in DNA double-strand break repair. J. Biol. Chem. 292, 11951–11959. https://doi.org/10.1074/jbc.M117.788224
Lin, S., Staahl, B.T., Alla, R.K., Doudna, J.A., 2014. Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. eLife 3. https://doi.org/10.7554/eLife.04766
Liu, S., Opiyo, S.O., Manthey, K., Glanzer, J.G., Ashley, A.K., Amerin, C., Troksa, K., Shrivastav, M., Nickoloff, J.A., Oakley, G.G., 2012. Distinct roles for DNA-PK, ATM and ATR in RPA phosphorylation and checkpoint activation in response to replication stress. Nucleic Acids Res. 40, 10780–10794. https://doi.org/10.1093/nar/gks849
Mallery, D.L., 2002. Activation of the E3 ligase function of the BRCA1/BARD1 complex by polyubiquitin chains. EMBO J. 21, 6755–6762. https://doi.org/10.1093/emboj/cdf691
Mediavilla-Varela, M., Pacheco, F.J., Almaguel, F., Perez, J., Sahakian, E., Daniels, T.R., Leoh, L., Padilla, A., Wall, N.R., Lilly, M.B., De Leon, M., Casiano, C.A., 2009. Docetaxel-induced prostate cancer cell death involves concomitant activation of caspase and lysosomal pathways and is attenuated by LEDGF/p75. Mol. Cancer 8, 68. https://doi.org/10.1186/1476-4598-8-68
Oceguera-Yanez, F., 2016. Engineering the AAVS1 locus for consistent and scalable transgene expression in human iPSCs and their differentiated derivatives 13.
Ochs, R.L., Mahler, M., Basu, A., Rios-Colon, L., Sanchez, T.W., Andrade, L.E., Fritzler, M.J., Casiano, C.A., 2016. The significance of autoantibodies to DFS70/LEDGFp75 in health and disease: integrating basic science with clinical understanding. Clin. Exp. Med. 16, 273–293.
Pradeepa, M.M., Sutherland, H.G., Ule, J., Grimes, G.R., Bickmore, W.A., 2012. Psip1/Ledgf p52 Binds Methylated Histone H3K36 and Splicing Factors and Contributes to the Regulation of Alternative Splicing. PLoS Genet. 8, e1002717. https://doi.org/10.1371/journal.pgen.1002717
R: The R Project for Statistical Computing [WWW Document], n.d. URL https://www.r-project.org/ (accessed 6.3.20).
Ramadan, K., Meerang, M., 2011. Degradation-linked ubiquitin signal and proteasome are integral components of DNA double strand break repair: New perspectives for anti-cancer therapy. FEBS Lett. 585, 2868–2875. https://doi.org/10.1016/j.febslet.2011.04.046
Ran, F.A., Hsu, P.D., Wright, J., Agarwala, V., Scott, D.A., Zhang, F., 2013. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–2308. https://doi.org/10.1038/nprot.2013.143
Ríos-Colón, L., Ross, C.K.C.-D., Basu, A., Elix, C., Alicea-Polanco, I., Sanchez, T.W., Radhakrishnan, V., Chen, C.-S., Casiano, C.A., 2017. Targeting the stress oncoprotein LEDGF/p75 to sensitize chemoresistant prostate cancer cells to taxanes. Oncotarget 8. https://doi.org/10.18632/oncotarget.15323
Ritz, C., Baty, F., Streibig, J.C., Gerhard, D., 2015. Dose-Response Analysis Using R. PLOS ONE 10, e0146021. https://doi.org/10.1371/journal.pone.0146021
Rödiger, S., Friedrichsmeier, T., Kapat, P., Michalke, M., 2012a. RKWard: a comprehensive graphical user interface and integrated development environment for statistical analysis with R. J. Stat. Softw. 49, 1–34. https://doi.org/10.18637/jss.v049.i09
Rödiger, S., Schierack, P., Böhm, A., Nitschke, J., Berger, I., Frömmel, U., Schmidt, C., Ruhland, M., Schimke, I., Roggenbuck, D., Lehmann, W., Schröder, C., 2012b. A Highly Versatile Microscope Imaging Technology Platform for the Multiplex Real-Time Detection of Biomolecules and Autoimmune Antibodies, in: Seitz, H., Schumacher, S. (Eds.), Molecular Diagnostics, Advances in Biochemical Engineering/Biotechnology. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 35–74. https://doi.org/10.1007/10_2011_132
Schneider, J., Weiss, R., Ruhe, M., Jung, T., Roggenbuck, D., Stohwasser, R., Schierack, P., Rödiger, S., 2019. Open source bioimage informatics tools for the analysis of DNA damage and associated biomarkers. J. Lab. Precis. Med. 21–21. https://doi.org/10.21037/jlpm.2019.04.05
SilMon. (2020, November 13). SilMon/Cell-Morphology-Notebook: v. 1.1 (Version v1.1). Zenodo. http://doi.org/10.5281/zenodo.4271745
Singh, D.K., Gholamalamdari, O., Jadaliha, M., Ling Li, X., Lin, Y.-C., Zhang, Y., Guang, S., Hashemikhabir, S., Tiwari, S., Zhu, Y.J., Khan, A., Thomas, A., Chakraborty, A., Macias, V., Balla, A.K., Bhargava, R., Janga, S.C., Ma, J., Prasanth, S.G., Lal, A., Prasanth, K.V., 2017. PSIP1/p75 promotes tumorigenicity in breast cancer cells by promoting the transcription of cell cycle genes. Carcinogenesis 38, 966–975. https://doi.org/10.1093/carcin/bgx062
Stone, H.R., Morris, J.R., 2014. DNA damage emergency: cellular garbage disposal to the rescue? Oncogene 33, 805–813. https://doi.org/10.1038/onc.2013.60
Tang, J., Cho, N.W., Cui, G., Manion, E.M., Shanbhag, N.M., Botuyan, M.V., Mer, G., Greenberg, R.A., 2013. Acetylation limits 53BP1 association with damaged chromatin to promote homologous recombination. Nat. Struct. Mol. Biol. 20, 317–325. https://doi.org/10.1038/nsmb.2499
Vargas-Rondón, N., Villegas, V., Rondón-Lagos, M., 2017. The Role of Chromosomal Instability in Cancer and Therapeutic Responses. Cancers 10, 4. https://doi.org/10.3390/cancers10010004
Vichai, V., Kirtikara, K., 2006. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat. Protoc. 1, 1112–1116. https://doi.org/10.1038/nprot.2006.179
Willitzki, A., Lorenz, S., Hiemann, R., Guttek, K., Goihl, A., Hartig, R., Conrad, K., Feist, E., Sack, U., Schierack, P., Heiserich, L., Eberle, C., Peters, V., Roggenbuck, D., Reinhold, D., 2013. Fully automated analysis of chemically induced γH2AX foci in human peripheral blood mononuclear cells by indirect immunofluorescence: Fully Automated γH2AX Foci Analysis in PBMCs. Cytometry A 83, 1017–1026. https://doi.org/10.1002/cyto.a.22350