The chromodomain helicase and DNA binding 4 (CHD4) protein is upregulated in regenerating myofibers. To define the role of CHD4 in muscle differentiation and regeneration, we generated mice with CHD4 ablated in muscle satellite cells (SCs). Embryonic day 18.5 CHD4 KO mice are non-viable, with atrophic intercostal and back muscles and altered expression of muscle contraction genes. Tamoxifen-inducible conditional CHD4 KO in adult mouse SCs diminished myoblast proliferation, induced premature differentiation, and altered expression of muscle contraction genes at the myotube stage. Following cardiotoxin–induced muscle injury, CHD4 KO regenerating myofibers had reduced cross-sectional area. ChIP-Seq analysis revealed that CHD4 binds actin a1, Wnt and b-catenin genes, which are known to play roles in the regulation of myogenesis. Together, our results suggest an important role for CHD4 in the control of embryonic myogenesis, SC differentiation, and the control of muscle fiber size in adult skeletal muscle during regeneration.