1. Jeon, N.J. et al. Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476-480 (2015).
2. Lin, Y. et al. Unveiling the operation mechanism of layered perovskite solar cells. Nat. Commun. 10, 1-11 (2019).
3. Bera, K.P. et al. Graphene Sandwich Stable Perovskite Quantum-Dot Light-Emissive Ultrasensitive and Ultrafast Broadband Vertical Phototransistors. ACS Nano 13, 12540-12552 (2019).
4. Gunnarsson, W.B. & Rand, B.P. Electrically driven lasing in metal halide perovskites: Challenges and outlook. APL Mater. 8, 030902 (2020).
5. Correa-Baena, J.-P. et al. Promises and challenges of perovskite solar cells. Science 358, 739-744 (2017).
6. Zhu, H. et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater. 14, 636-642 (2015).
7. Tsai, H. et al. Stable Light-Emitting Diodes Using Phase-Pure Ruddlesden-Popper Layered Perovskites. Adv. Mater. 30, 1704217 (2018).
8. Lee, H.D. et al. Efficient Ruddlesden-Popper Perovskite Light-Emitting Diodes with Randomly Oriented Nanocrystals. Adv. Funct. Mater. 29, 1901225 (2019).
9. Shirasaki, Y., Supran, G.J., Bawendi, M.G. & Bulović, V. Emergence of colloidal quantum-dot light-emitting technologies. Nat. Photonics 7, 13 (2013).
10. Li, M. et al. Enhanced exciton and photon confinement in Ruddlesden–Popper perovskite microplatelets for highly stable low‐threshold polarized lasing. Adv. Mater. 30, 1707235 (2018).
11. Sun, B., Xu, Y., Chen, Y. & Huang, W. Two-dimensional Ruddlesden-Popper layered perovskite for light-emitting diodes. APL Mater. 8, 040901 (2020).
12. Nikoobakht, B. et al. High-brightness lasing at submicrometer enabled by droop-free fin light-emitting diodes (LEDs). Sci. adv. 6, eaba4346 (2020).
13. Slotcavage, D., Karunadasa, H. & McGehee, M.
14. Stoumpos, C.C. et al. Ruddlesden-Popper hybrid lead iodide perovskite 2D homologous semiconductors. Chem. Mater. 28, 2852-2867 (2016).
15. Wang, N. et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat. Photon. 10, 699-704 (2016).
16. Proppe, A.H. et al. Photochemically cross-linked quantum well ligands for 2D/3D perovskite photovoltaics with improved photovoltage and stability. J. Am. Chem. Soc. 141, 14180-14189 (2019).
17. Yuan, M. et al. Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotechnol. 11, 872-877 (2016).
18. Zhang, Q., Ha, S.T., Liu, X., Sum, T.C. & Xiong, Q. Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers. Nano Lett. 14, 5995-6001 (2014).
19. Raghavan, C.M. et al. Low-Threshold Lasing from 2D Homologous Organic-Inorganic Hybrid Ruddlesden-Popper Perovskite Single Crystals. Nano Lett. 18, 3221-3228 (2018).
20. Cao, D.H., Stoumpos, C.C., Farha, O.K., Hupp, J.T. & Kanatzidis, M.G. 2D Homologous Perovskites as Light-Absorbing Materials for Solar Cell Applications. J. Am. Chem. Soc. 137, 7843-7850 (2015).
21. Shao, Y. et al. Stable Graphene-Two-Dimensional Multiphase Perovskite Heterostructure Phototransistors with High Gain. Nano Lett. 17, 7330-7338 (2017).
22. Hanmandlu, C., Singh, A., Boopathi, K.M., Lai, C.-S. & Chu, C.-W. Layered perovskite materials: key solutions for highly efficient and stable perovskite solar cells. Rep. Prog. Phys. 83, 086502 (2020).
23. Chong, W.K. et al. Dominant factors limiting the optical gain in layered two-dimensional halide perovskite thin films. Phys. Chem. Chem. Phys. 18, 14701-14708 (2016).
24. Bera, K.P. et al. Intrinsic Ultralow-Threshold Laser Action from Rationally Molecular Design of Metal-Organic Framework Materials. ACS Appl. Mater. Interfaces 12, 36485-36495 (2020).
25. Wang, N. et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat. Photon. 10, 699-704 (2016).
26. Yuan, M. et al. Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotechnol. 11, 872-877 (2016).
27. Zhao, C. & Qin, C. Quasi-2D lead halide perovskite gain materials toward electrical pumping laser. Nanophotonics (2021).
28. Medishetty, R. et al. A New Class of Lasing Materials: Intrinsic Stimulated Emission from Nonlinear Optically Active Metal–Organic Frameworks. Adv. Mater. 29, 1605637 (2017).
29. He, H. et al. Polarized three-photon-pumped laser in a single MOF microcrystal. Nat. Commun. 7, 11087 (2016).
30. Xu, Z. et al. Low-threshold nanolasers based on slab-nanocrystals of H-aggregated organic semiconductors. Adv. mater. 24, Op216-220 (2012).
31. Shadak Alee, K., Barik, S. & Mujumdar, S. Förster energy transfer induced random lasing at unconventional excitation wavelengths. Appl. Phys. Lett. 103, 221112 (2013).
32. Shen, T.-L. et al. Coherent Förster resonance energy transfer: A new paradigm for electrically driven quantum dot random lasers. Sci. adv. 6, eaba1705 (2020).
33. Shi, X., Tong, J., Liu, D. & Wang, Z. Resonance energy transfer process in nanogap-based dual-color random lasing. Appl. Phys. Lett. 110, 171110 (2017).
34. Liu, X.-K. & Gao, F. Organic-inorganic hybrid ruddlesden-popper perovskites: an emerging paradigm for high-performance light-emitting diodes. J. Phys. Chem. Lett. 9, 2251-2258 (2018).
35. Ra, Y.-H. et al. An electrically pumped surface-emitting semiconductor green laser. Sci. Adv. 6, eaav7523 (2020).
36. Suja, M. et al. Electrically driven plasmon-exciton coupled random lasing in ZnO metal-semiconductor-metal devices. Appl. Surf. Sci. 439, 525-532 (2018).
37. Lu, Y.-J. et al. Plasmonic nanolaser using epitaxially grown silver film. science 337, 450-453 (2012).
38. Ellis, B. et al. Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser. Nat. Photon. 5, 297-300 (2011).