Aruna TE (2019) Production of value-added product from pineapple peels using solid state fermentation. Innov Food Sci Emerg Technol 57:102193. https://doi.org/10.1016/j.ifset.2019.102193
Ban-Koffi L, Han YW (1990) Alcohol production from pineapple waste. World J Microbiol Biotechnol 6:281–284. https://doi.org/10.1007/BF01201297
Bandyopadhyay-Ghosh S, Ghosh SB, Sain M (2015) The use of biobased nanofibres in composites. In: Biofiber Reinforcements in Composite Materials. Elsevier, pp 571–647
Banerjee S, Patti AF, Ranganathan V, Arora A (2019) Hemicellulose based biorefinery from pineapple peel waste: Xylan extraction and its conversion into xylooligosaccharides. Food Bioprod Process 117:38–50. https://doi.org/10.1016/j.fbp.2019.06.012
Banerjee S, Ranganathan V, Patti A, Arora A (2018) Valorisation of pineapple wastes for food and therapeutic applications. Trends Food Sci Technol 82:60–70. https://doi.org/https://doi.org/10.1016/j.tifs.2018.09.024
Besbes I, Alila S, Boufi S (2011) Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: Effect of the carboxyl content. Carbohydr Polym 84:975–983. https://doi.org/10.1016/j.carbpol.2010.12.052
Bhagia S, Pu Y, Evans BR, et al (2018) Hemicellulose characterization of deuterated switchgrass. Bioresour Technol 269:567–570. https://doi.org/10.1016/j.biortech.2018.08.034
Braga V, Guidi LR, de Santana RC, Zotarelli MF (2020) Production and characterization of pineapple-mint juice by spray drying. Powder Technol 375:409–419. https://doi.org/10.1016/j.powtec.2020.08.012
Casabar JT, Ramaraj R, Tipnee S, Unpaprom Y (2020) Enhancement of hydrolysis with Trichoderma harzianum for bioethanol production of sonicated pineapple fruit peel. Fuel 279:118437. https://doi.org/10.1016/j.fuel.2020.118437
Cavali M, Soccol CR, Tavares D, et al (2020) Effect of sequential acid-alkaline treatment on physical and chemical characteristics of lignin and cellulose from pine (Pinus spp.) residual sawdust. Bioresour Technol 316:123884. https://doi.org/10.1016/j.biortech.2020.123884
Contreras-Zarazúa G, Martin-Martin M, Sánchez-Ramirez E, Segovia-Hernández JG (2021) Furfural production from agricultural residues using different intensified separation and pretreatment alternatives. Economic and environmental assessment. Chem Eng Process - Process Intensif 108569. https://doi.org/10.1016/j.cep.2021.108569
Cristina K, Carvalho C De, Heitor B, et al (2020) Survey on chemical , physical , and thermal prediction behaviors for sequential chemical treatments used to obtain cellulose from Imperata Brasiliensis. J Therm Anal Calorim. https://doi.org/10.1007/s10973-019-09221-5
Dai D, Fan M (2011) Investigation of the dislocation of natural fibres by Fourier-transform infrared spectroscopy. Vib Spectrosc 55:300–306. https://doi.org/10.1016/j.vibspec.2010.12.009
Dai H, Huang H (2017) Synthesis, characterization and properties of pineapple peel cellulose-g-acrylic acid hydrogel loaded with kaolin and sepia ink. Cellulose 24:69–84. https://doi.org/10.1007/s10570-016-1101-0
Dai H, Huang Y, Zhang H, et al (2020) Direct fabrication of hierarchically processed pineapple peel hydrogels for efficient Congo red adsorption. Carbohydr Polym 230:115599. https://doi.org/10.1016/j.carbpol.2019.115599
Dai H, Zhang H, Ma L, et al (2019) Green pH/magnetic sensitive hydrogels based on pineapple peel cellulose and polyvinyl alcohol: synthesis, characterization and naringin prolonged release. Carbohydr Polym 209:51–61. https://doi.org/10.1016/j.carbpol.2019.01.014
de Menezes Nogueira I, Avelino F, de Oliveira DR, et al (2019) Organic solvent fractionation of acetosolv palm oil lignin: The role of its structure on the antioxidant activity. Int J Biol Macromol 122:1163–1172. https://doi.org/10.1016/j.ijbiomac.2018.09.066
Debnath B, Haldar D, Purkait MK (2021) A critical review on the techniques used for the synthesis and applications of crystalline cellulose derived from agricultural wastes and forest residues. Carbohydr Polym 273:118537. https://doi.org/10.1016/j.carbpol.2021.118537
Dence CW (1992) The Determination of Lignin. In: Lin SY, Dence CW (eds) Methods in Lignin Chemistry. Springer Berlin Heidelberg, Berlin, pp 33–61
Drozin D, Sozykin S, Ivanova N, et al (2020) Kinetic calculation: Software tool for determining the kinetic parameters of the thermal decomposition process using the Vyazovkin Method. SoftwareX 11:100359. https://doi.org/10.1016/j.softx.2019.100359
Fonseca AS, Panthapulakkal S, Konar SK, et al (2019) Improving cellulose nanofibrillation of non-wood fiber using alkaline and bleaching pre-treatments. Ind Crops Prod 131:203–212. https://doi.org/10.1016/j.indcrop.2019.01.046
French AD (2014a) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896. https://doi.org/10.1007/s10570-013-0030-4
French AD (2014b) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896. https://doi.org/10.1007/s10570-013-0030-4
French AD, Santiago Cintrón M (2013) Cellulose polymorphy, crystallite size, and the Segal Crystallinity Index. Cellulose 20:583–588. https://doi.org/10.1007/s10570-012-9833-y
Gabriel T, Belete A, Syrowatka F, et al (2020) Extraction and characterization of celluloses from various plant byproducts. Int J Biol Macromol 158:1248–1258. https://doi.org/10.1016/j.ijbiomac.2020.04.264
Gnanasekaran S, Nordin NIAA, Jamari SS, Shariffuddin JH (2021) Effect of Steam-Alkaline coupled treatment on N36 cultivar pineapple leave fibre for isolation of cellulose. Mater Today Proc. https://doi.org/10.1016/j.matpr.2021.02.216
Hadidi M, Amoli PI, Jelyani AZ, et al (2020) Polysaccharides from pineapple core as a canning by-product: Extraction optimization, chemical structure, antioxidant and functional properties. Int J Biol Macromol 163:2357–2364. https://doi.org/10.1016/j.ijbiomac.2020.09.092
Haldar D, Purkait MK (2020) Micro and nanocrystalline cellulose derivatives of lignocellulosic biomass: A review on synthesis, applications and advancements. Carbohydr Polym 250:116937. https://doi.org/10.1016/j.carbpol.2020.116937
Hoareau W, Trindade WG, Siegmund B, et al (2004) Sugar cane bagasse and curaua lignins oxidized by chlorine dioxide and reacted with furfuryl alcohol : characterization and stability. Polym Degrad Stab 86:567e576. https://doi.org/10.1016/j.polymdegradstab.2004.07.005
Hongrattanavichit I, Aht-Ong D (2020) Nanofibrillation and characterization of sugarcane bagasse agro-waste using water-based steam explosion and high-pressure homogenization. J Clean Prod 277:123471. https://doi.org/10.1016/j.jclepro.2020.123471
Hu L, Peng H, Xia Q, et al (2020) Effect of ionic liquid pretreatment on the physicochemical properties of hemicellulose from bamboo. J Mol Struct 1210:128067. https://doi.org/10.1016/j.molstruc.2020.128067
Johari AP, Kurmvanshi SK, Mohanty S, Nayak SK (2016) Influence of surface modified cellulose microfibrils on the improved mechanical properties of poly (lactic acid). Int J Biol Macromol 84:329–339. https://doi.org/10.1016/j.ijbiomac.2015.12.038
Ketnawa S, Chaiwut P, Rawdkuen S (2012) Pineapple wastes: A potential source for bromelain extraction. Food Bioprod Process 90:385–391. https://doi.org/10.1016/j.fbp.2011.12.006
Khristova P, Tomkinson J, Valchev I, et al (2002) Totally chlorine-free bleaching of flax pulp. Bioresour Technol 85:79–85. https://doi.org/10.1016/S0960-8524(02)00022-6
Kim JS, Lee YY, Kim TH (2016) A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour Technol 199:42–48. https://doi.org/10.1016/j.biortech.2015.08.085
Kumar K, Srivastav S, Sharanagat VS (2021) Ultrasound assisted extraction (UAE) of bioactive compounds from fruit and vegetable processing by-products: A review. Ultrason Sonochem 70:105325. https://doi.org/10.1016/j.ultsonch.2020.105325
Li J, Bai X, Fang Y, et al (2020) Comprehensive mechanism of initial stage for lignin pyrolysis. Combust Flame 215:1–9. https://doi.org/10.1016/j.combustflame.2020.01.016
Marques FP, Silva LMA, Lomonaco D, et al (2020) Steam explosion pretreatment to obtain eco-friendly building blocks from oil palm mesocarp fiber. Ind Crops Prod 143:111907. https://doi.org/10.1016/j.indcrop.2019.111907
Melikoğlu AY, Bilek SE, Cesur S (2019) Optimum alkaline treatment parameters for the extraction of cellulose and production of cellulose nanocrystals from apple pomace. Carbohydr Polym 215:330–337. https://doi.org/10.1016/j.carbpol.2019.03.103
Method O, The T (1993) Determination of equilibrium moisture in pulp , paper and paperboard for chemical analysis. 1–3
Oculi J, Bua B, Ocwa A (2020) Reactions of pineapple cultivars to pineapple heart rot disease in central Uganda. Crop Prot 135:105213. https://doi.org/10.1016/j.cropro.2020.105213
Ornaghi HL, Ornaghi FG, Neves RM, et al (2020) Mechanisms involved in thermal degradation of lignocellulosic fibers: a survey based on chemical composition. Cellulose 27:4949–4961. https://doi.org/10.1007/s10570-020-03132-7
Ornaghi HL, Poletto M, Zattera AJ, Amico SC (2014) Correlation of the thermal stability and the decomposition kinetics of six different vegetal fibers. Cellulose 21:177–188. https://doi.org/10.1007/s10570-013-0094-1
Pardo MES, Cassellis MER, Escobedo RM, García EJ (2014) Chemical Characterisation of the Industrial Residues of the Pineapple (Ananas comosus). J Agric Chem Environ 03:53–56. https://doi.org/10.4236/jacen.2014.32b009
Pereira PHF, Ornaghi HL, Arantes V, Cioffi MOH (2021) Effect of chemical treatment of pineapple crown fiber in the production, chemical composition, crystalline structure, thermal stability and thermal degradation kinetic properties of cellulosic materials. Carbohydr Res 499:108227. https://doi.org/10.1016/j.carres.2020.108227
Pereira, PHF, Luiz H, et al (2020) Obtaining cellulose nanocrystals from pineapple crown fibers by free-chlorite hydrolysis with sulfuric acid : physical , chemical and structural characterization. Cellulose 27:5745-5756. http://dx.doi.org/10.1007/s10570-020-03179-6
Pereira, PHF, Souza NF, et al (2020) Comparative analysis of different chlorine-free extraction on oil palm mesocarp fiber.Industrial Crops & Produts 150: 112305. https://doi.org/10.1016/j.indcrop.2020.112305
Pereira PHF, Voorwald HCJ, Cioffi MOH, et al (2011) Sugarcane bagasse pulping and bleaching: Thermal and chemical characterization. BioResources 6(3) 2471-2482.
Putrino FM, Tedesco M, Bodini RB, Oliveira AL de (2020) Study of supercritical carbon dioxide pretreatment processes on green coconut fiber to enhance enzymatic hydrolysis of cellulose. Bioresour Technol 309:123387. https://doi.org/10.1016/j.biortech.2020.123387
Rani DS, Nand K (2004) Ensilage of pineapple processing waste for methane generation. Waste Manag 24:523–528. https://doi.org/10.1016/j.wasman.2003.10.010
Rodsamran P, Sothornvit R (2019) Preparation and characterization of pectin fraction from pineapple peel as a natural plasticizer and material for biopolymer film. Food Bioprod Process 118:198–206. https://doi.org/10.1016/j.fbp.2019.09.010
Romanzini D, Lavoratti A, Ornaghi HL, et al (2013) Influence of fiber content on the mechanical and dynamic mechanical properties of glass / ramie polymer composites. Mater Des 47:9–15. https://doi.org/10.1016/j.matdes.2012.12.029
Sabarinathan P, Rajkumar K, Annamalai VE, Vishal K (2020) Characterization on chemical and mechanical properties of silane treated fish tail palm fibres. Int J Biol Macromol 163:2457–2464. https://doi.org/10.1016/j.ijbiomac.2020.09.159
Salehi F, Aghajanzadeh S (2020) Effect of dried fruits and vegetables powder on cakes quality: A review. Trends Food Sci Technol 95:162–172. https://doi.org/10.1016/j.tifs.2019.11.011
Segal L, Creely JJ, Martin AE, Conrad CM (1959b) An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer. Text Res J 29:786–794. https://doi.org/10.1177/004051755902901003
Shakya A, Agarwal T (2019) Removal of Cr(VI) from water using pineapple peel derived biochars: Adsorption potential and re-usability assessment. J Mol Liq 293:111497. https://doi.org/10.1016/j.molliq.2019.111497
Sluiter a., Hames B, Ruiz R, et al (2012) NREL/TP-510-42618 analytical procedure - Determination of structural carbohydrates and lignin in Biomass. Lab Anal Proced 17. https://doi.org/NREL/TP-510-42618
Statista (2020) No Title. In: Lead. Ctries. pineapple Prod. worlwide 2017. https://www.statista.com/statistics/298517/global-pineapple-production-by-leading-countries/.
Technical Association of Pulp and Paper Industry (1997) T204 cm-97. Solvent extractives of wood and pulp. TAPPI test methods 12. https://doi.org/10.5772/916
Tonoli GHD, Holtman K, Silva LE, et al (2021) Changes on structural characteristics of cellulose pulp fiber incubated for different times in anaerobic digestate. CERNE 27:. https://doi.org/10.1590/01047760202127012647
Vinod A, Sanjay MR, Suchart S, Jyotishkumar P (2020) Renewable and sustainable biobased materials: An assessment on biofibers, biofilms, biopolymers and biocomposites. J Clean Prod 258:120978. https://doi.org/10.1016/j.jclepro.2020.120978
Wang T, Zhao Y (2021) Optimization of bleaching process for cellulose extraction from apple and kale pomace and evaluation of their potentials as film forming materials. Carbohydr Polym 253:117225. https://doi.org/10.1016/j.carbpol.2020.117225
Wu M-Y, Shiau S-Y (2015) Effect of the Amount and Particle Size of Pineapple Peel Fiber on Dough Rheology and Steamed Bread Quality. J Food Process Preserv 39:549–558. https://doi.org/10.1111/jfpp.12260
Xie X, Feng X, Chi S, et al (2018) A sustainable and effective potassium hydroxide pretreatment of wheat straw for the production of fermentable sugars. Bioresour Technol Reports 3:169–176. https://doi.org/10.1016/j.biteb.2018.07.014
Yu Y, Lau A, Sokhansanj S (2021) Improvement of the pellet quality and fuel characteristics of agricultural residues through mild hydrothermal treatment. Ind Crops Prod 169:113654. https://doi.org/10.1016/j.indcrop.2021.113654
Zhang L, Yang Z, Li S, et al (2020) Comparative study on the two-step pyrolysis of different lignocellulosic biomass: Effects of components. J Anal Appl Pyrolysis 104966. https://doi.org/10.1016/j.jaap.2020.104966