1. Miyazaki, S. et al. 1 - Shape memory effect and superelasticity in Ti—Ni alloys, Shape Memory Alloys for Biomedical Applications, Woodhead Publishing, 3-19 (2009). https://doi.org/10.1533/9781845695248.1.3
2. Sun, J., et al. Morphing aircraft based on smart materials and structures: A state-of-the-art review. Journal of Intelligent Material Systems and Structures, 27(17):2289-2312 (2016). https://doi:10.1177/1045389X16629569
3. Jani, J.M. et al. Shape Memory Alloys in Automotive Applications, Applied Mechanics and Materials, 663, pp. 248–253 (2014). https://doi:10.4028/www.scientific.net/AMM.663.248
4. Knick, C.R. et al. High frequency, low power, electrically actuated shape memory alloy MEMS bimorph thermal actuators, Journal of Micromechanics and Microengineering, 29, 075005 (2019). https://doi.org/10.1088/1361-6439/ab1633
5. Petrini, L., Migliavacca, F., Biomedical Applications of Shape Memory Alloys, Journal of Metallurgy, 2011, 501483 (2011). https://doi.org/10.1155/2011/501483
6. Zainal, M.A.; Sahlan, S.; Ali, M.S.M. Micromachined Shape-Memory-Alloy Microactuators and Their Application in Biomedical Devices. Micromachines, 6, 879-901 (2015). https://doi.org/10.3390/mi6070879
7. Fujita, H., Toshiyoshi, H. Micro actuator and their applications, Microelectronics Journal, 29, 637-640 (1998). https://doi.org/10.1016/S0026-2692(98)00027-5
8. Leester-Schädel, M., Hoxhold, B., Lesche, C. et al. Micro actuators on the basis of thin SMA foils. Microsyst Technol 14, 697–704 (2008). https://doi.org/10.1007/s00542-008-0600-9
9. Ochin, P. et al. Phase Transformations in Rapidly Solidified (Ti-Zr)50(Ni-Cu-Sn)50 Alloys, Materials Science and Engineering A, 438–440, p 630–633 (2006). https://doi.org/10.1016/j.msea.2006.02.068
10. Kim, Y.W. et al. The Effect of the Melt Spinning Processing Parameters on the Solidification Structures in Ti–30 at.%Ni–20 at.% Cu Shape Memory Alloys, Materials Science and Engineering A, 438–440, pp 545–548 (2006). https://doi.org/10.1016/j.msea.2006.05.169
11. Mehrabi, K. et al. Influence of Quenching Rates on Equiatomic NiTi Ribbons Fabricated by Melt-Spinning, Journal of Materials Engineering and Performance, 18, pp. 475-478 (2009). https://doi.org/10.1007/s11665-009-9396-8
12. Dutta, R., Chen, C., Renshaw, D. et al. Vision based supervised restricted Boltzmann machine helps to actuate novel shape memory alloy accurately. Sci Rep 11, 16446 (2021). https://doi.org/10.1038/s41598-021-95939-y
13. Dutta, Ritaban, et al. "Machine learning based approach for shape memory polymer behavioural characterization." Array 7 (2020): 100036. https://doi.org/10.1016/j.array.2020.100036
14. https://xgboost.readthedocs.io/en/stable/tutorials/model.html (2021).
15. Taherimakhsousi, N., Fievez, M., MacLeod, B.P. et al. A machine vision tool for facilitating the optimization of large-area perovskite photovoltaics. npj Comput Mater 7, 190 (2021). https://doi.org/10.1038/s41524-021-00657-8
16. Ghosh, A., Sumpter, B.G., Dyck, O. et al. Ensemble learning-iterative training machine learning for uncertainty quantification and automated experiment in atom-resolved microscopy. npj Comput Mater 7, 100 (2021). https://doi.org/10.1038/s41524-021-00569-7
17. Kumar, J.N., Li, Q., Tang, K.Y.T. et al. Machine learning enables polymer cloud-point engineering via inverse design. npj Comput Mater 5, 73 (2019). https://doi.org/10.1038/s41524-019-0209-9
18. Kaufmann, K., Maryanovsky, D., Mellor, W.M. et al. Discovery of high-entropy ceramics via machine learning. npj Comput Mater 6, 42 (2020). https://doi.org/10.1038/s41524-020-0317-6
19. Kaufmann, K., Maryanovsky, D., Mellor, W.M. et al. Discovery of high-entropy ceramics via machine learning. npj Comput Mater 6, 42 (2020). https://doi.org/10.1038/s41524-020-0317-6
20. Chen, T., Guestrin, C., XGBoost: A Scalable Tree Boosting System, the 22nd ACM SIGKDD International Conference, Pages 785–794 (2016). https://doi.org/10.1145/2939672.2939785
21. Yang, F., Li, Z., Wang, Q. et al. Cluster-formula-embedded machine learning for design of multicomponent β-Ti alloys with low Young’s modulus. npj Comput Mater 6, 101 (2020). https://doi.org/10.1038/s41524-020-00372-w
22. Liu, Z., Shi, Y., Chen, H. et al. Machine learning on properties of multiscale multisource hydroxyapatite nanoparticles datasets with different morphologies and sizes. npj Comput Mater 7, 142 (2021). https://doi.org/10.1038/s41524-021-00618-1
23. Wang, Q., Ding, J., Zhang, L. et al. Predicting the propensity for thermally activated β events in metallic glasses via interpretable machine learning. npj Comput Mater 6, 194 (2020). https://doi.org/10.1038/s41524-020-00467-4
24. Bartel, C.J., Trewartha, A., Wang, Q. et al. A critical examination of compound stability predictions from machine-learned formation energies. npj Comput Mater 6, 97 (2020). https://doi.org/10.1038/s41524-020-00362-y
25. Zeng, S., Zhao, Y., Li, G. et al. Atom table convolutional neural networks for an accurate prediction of compounds properties. npj Comput Mater 5, 84 (2019). https://doi.org/10.1038/s41524-019-0223-y
26. Hu, YJ., Zhao, G., Zhang, M. et al. Predicting densities and elastic moduli of SiO2-based glasses by machine learning. npj Comput Mater 6, 25 (2020). https://doi.org/10.1038/s41524-020-0291-z
27. Kailkhura, B., Gallagher, B., Kim, S. et al. Reliable and explainable machine-learning methods for accelerated material discovery. npj Comput Mater 5, 108 (2019). https://doi.org/10.1038/s41524-019-0248-2
28. Sutton, C., Ghiringhelli, L.M., Yamamoto, T. et al. Crowd-sourcing materials-science challenges with the NOMAD 2018 Kaggle competition. npj Comput Mater 5, 111 (2019). https://doi.org/10.1038/s41524-019-0239-3
29. Im, J., Lee, S., Ko, TW. et al. Identifying Pb-free perovskites for solar cells by machine learning. npj Comput Mater 5, 37 (2019). https://doi.org/10.1038/s41524-019-0177-0
30. Tao, Q., Xu, P., Li, M. et al. Machine learning for perovskite materials design and discovery. npj Comput Mater 7, 23 (2021). https://doi.org/10.1038/s41524-021-00495-8
31. Tao, Q., Xu, P., Li, M. et al. Machine learning for perovskite materials design and discovery. npj Comput Mater 7, 23 (2021). https://doi.org/10.1038/s41524-021-00495-8
32. Tao, Q., Xu, P., Li, M. et al. Machine learning for perovskite materials design and discovery. npj Comput Mater 7, 23 (2021). https://doi.org/10.1038/s41524-021-00495-8
33. Yang, S., Omori, T., Wang, C. et al. A jumping shape memory alloy under heat. Sci Rep 6, 21754 (2016). https://doi.org/10.1038/srep21754
34. Velvaluri, P., Soor, A., Plucinsky, P. et al. Origami-inspired thin-film shape memory alloy devices. Sci Rep 11, 10988 (2021). https://doi.org/10.1038/s41598-021-90217-3
35. Amini, A., Cheng, C., Kan, Q. et al. Phase Transformation Evolution in NiTi Shape Memory Alloy under Cyclic Nanoindentation Loadings at Dissimilar Rates. Sci Rep 3, 3412 (2013). https://doi.org/10.1038/srep03412
36. Lee, J.I., Tsuchiya, K., Tasaki, W. et al. A strategy of designing high-entropy alloys with high-temperature shape memory effect. Sci Rep 9, 13140 (2019). https://doi.org/10.1038/s41598-019-49529-8
37. Hart, G.L.W., Mueller, T., Toher, C. et al. Machine learning for alloys. Nat Rev Mater 6, 730–755 (2021). https://doi.org/10.1038/s41578-021-00340-w
38. Hart, G.L.W., Mueller, T., Toher, C. et al. Machine learning for alloys. Nat Rev Mater 6, 730–755 (2021). https://doi.org/10.1038/s41578-021-00340-w
39. Lee, JW., Park, C., Do Lee, B. et al. A machine-learning-based alloy design platform that enables both forward and inverse predictions for thermo-mechanically controlled processed (TMCP) steel alloys. Sci Rep 11, 11012 (2021). https://doi.org/10.1038/s41598-021-90237-z
40. Lee, JW., Park, C., Do Lee, B. et al. A machine-learning-based alloy design platform that enables both forward and inverse predictions for thermo-mechanically controlled processed (TMCP) steel alloys. Sci Rep 11, 11012 (2021). https://doi.org/10.1038/s41598-021-90237-z