[1] X. Q. Wang and A. S. Mujumdar, “A review on nanofluids - Part II: Experiments and applications,” *Brazilian Journal of Chemical Engineering*. 2008, doi: 10.1590/S0104-66322008000400002.

[2] L. Jia, Y. Chen, S. Lei, S. Mo, Z. Liu, and X. Shao, “Effect of magnetic field and surfactant on dispersion of Graphene/water nanofluid during solidification,” in *Energy Procedia*, 2014, doi: 10.1016/j.egypro.2014.12.124.

[3] W. Duangthongsuk and S. Wongwises, “Measurement of temperature-dependent thermal conductivity and viscosity of TiO2-water nanofluids,” *Exp. Therm. Fluid Sci.*, 2009, doi: 10.1016/j.expthermflusci.2009.01.005.

[4] P. Hajiani and F. Larachi, “Magnetic-field assisted mixing of liquids using magnetic nanoparticles,” *Chem. Eng. Process. Process Intensif.*, 2014, doi: 10.1016/j.cep.2014.03.012.

[5] S. U. S. Choi, W. Yu, J. R. Hull, Z. G. Zhang, and F. E. Lockwood, “Nanofluids for vehicle thermal management,” in *SAE Technical Papers*, 2001, doi: 10.4271/2001-01-1706.

[6] M. S. Liu, M. Ching-Cheng Lin, I. Te Huang, and C. C. Wang, “Enhancement of thermal conductivity with carbon nanotube for nanofluids,” *Int. Commun. Heat Mass Transf.*, 2005, doi: 10.1016/j.icheatmasstransfer.2005.05.005.

[7] X. F. Li, D. S. Zhu, X. J. Wang, N. Wang, J. W. Gao, and H. Li, “Thermal conductivity enhancement dependent pH and chemical surfactant for Cu-H2O nanofluids,” *Thermochim. Acta*, 2008, doi: 10.1016/j.tca.2008.01.008.

[8] Y. Hwang *et al.*, “Stability and thermal conductivity characteristics of nanofluids,” *Thermochim. Acta*, 2007, doi: 10.1016/j.tca.2006.11.036.

[9] A. W. Salamon, “The current world of nanomaterial characterization: Discussion of analytical instruments for nanomaterial characterization,” *Environmental Engineering Science*. 2013, doi: 10.1089/ees.2012.0330.

[10] LINSINGER Thomas; ROEBBEN Gert; et al., “Requirements on measurements for the implementation of the European Commission definition of the term ‘nanomaterial,’” *Publ. Off. Eur. Union*, 2013, doi: 10.2787/63995.

[11] Y. Xuan and Q. Li, “Heat transfer enhancement of nanofluids,” *Int. J. Heat Fluid Flow*, 2000, doi: 10.1016/S0142-727X(99)00067-3.

[12] D. Brutin, “Influence of relative humidity and nano-particle concentration on pattern formation and evaporation rate of pinned drying drops of nanofluids,” *Colloids Surfaces A Physicochem. Eng. Asp.*, 2013, doi: 10.1016/j.colsurfa.2013.03.012.

[13] X. Zhong, A. Crivoi, and F. Duan, “Sessile nanofluid droplet drying,” *Advances in Colloid and Interface Science*. 2015, doi: 10.1016/j.cis.2014.12.003.

[14] H. C. Chan, S. Paik, J. B. Tipton, and K. D. Kihm, “Effect of nanoparticle sizes and number densities on the evaporation and dryout characteristics for strongly pinned nanofluid droplets,” *Langmuir*, 2007, doi: 10.1021/la061661y.

[15] J. Cai, X. Hu, B. Xiao, Y. Zhou, and W. Wei, “Recent developments on fractal-based approaches to nanofluids and nanoparticle aggregation,” *International Journal of Heat and Mass Transfer*. 2017, doi: 10.1016/j.ijheatmasstransfer.2016.10.011.

[16] P. E. Gharagozloo and K. E. Goodson, “Aggregate fractal dimensions and thermal conduction in nanofluids,” *J. Appl. Phys.*, 2010, doi: 10.1063/1.3481423.

[17] Y. Lv *et al.*, “Fractal Analysis of Positive Streamer Patterns in Transformer Oil-Based TiO2 Nanofluid,” *IEEE Trans. Plasma Sci.*, 2017, doi: 10.1109/TPS.2017.2705167.

[18] A. Kumar and C. K. Dixit, “Methods for characterization of nanoparticles,” in *Advances in Nanomedicine for the Delivery of Therapeutic Nucleic Acids*, 2017.

[19] E. A. Hauser, “The history of colloid science,” *Journal of Chemical Education*. 1955, doi: 10.1021/ed032p2.

[20] X. J. Wang, X. Li, and S. Yang, “Influence of pH and SDBS on the stability and thermal conductivity of nanofluids,” *Energy and Fuels*, 2009, doi: 10.1021/ef800865a.

[21] S. Nimesh, R. Chandra, and N. Gupta, *Advances in Nanomedicine for the Delivery of Therapeutic Nucleic Acids*. 2017.

[22] J. Augustyniak and D. M. Perkowski, “Compound analysis of gas bubble trajectories with help of multifractal algorithm,” *Exp. Therm. Fluid Sci.*, 2021, doi: 10.1016/j.expthermflusci.2021.110351.

[23] A. Asadi and I. M. Alarifi, “Effects of ultrasonication time on stability, dynamic viscosity, and pumping power management of MWCNT-water nanofluid: an experimental study,” *Sci. Rep.*, 2020, doi: 10.1038/s41598-020-71978-9.

[24] D. K. Devendiran and V. A. Amirtham, “A review on preparation, characterization, properties and applications of nanofluids,” *Renewable and Sustainable Energy Reviews*. 2016, doi: 10.1016/j.rser.2016.01.055.

[25] J. F. Muzy, E. Bacry, and A. Arneodo, “Multifractal formalism for fractal signals: The structure-function approach versus the wavelet-transform modulus-maxima method,” *Phys. Rev. E*, vol. 47, no. 2, pp. 875–884, 1993, doi: 10.1103/PhysRevE.47.875.

[26] B. Yao, F. Imani, A. S. Sakpal, E. W. Reutzel, and H. Yang, “Multifractal Analysis of Image Profiles for the Characterization and Detection of Defects in Additive Manufacturing,” *J. Manuf. Sci. Eng. Trans. ASME*, 2018, doi: 10.1115/1.4037891.