Bimetallic Metal organic framework (MOF) has garnered interest over the years with its application in various environmental remediation. In this study, Fe-Al-1,4-Benzene di-Carboxylic acid (FeAl(BDC)) MOF was synthesized, and adsorptive removal of Rhodamine B dye in batch and unique hybrid FeAl (BDC)-River sand fixed-bed column was achieved. The experimental data from the batch studies corroborated well with the Pseudo second-order (PSO) and Freundlich adsorption isotherm models. Furthermore, a fixed-bed column study was conducted to assess the effect of varying flow rate (2, 5, 8 mL/min), bed height (5, 9, 13 cm), and feed concentration (10, 20, 30 mg/L) on the adsorption performance of FeAl(BDC) in continuous mode of operation. A uniform mixture of river sand and FeAl(BDC) by weight ratio (9:1) was achieved prior to packing the column. The column study reveals that Sand-FeAl(BDC) can achieve the maximum adsorption capacity of 113.05 mg/g at a flow rate of 5 mL/min, feed concentration of 20 mg/L, and bed height of 13 cm. The experimental data of the column study were successfully fitted with BDST, Thomas, Yoon-Nelson, and Dose-response models. The fitting parameter values from the BDST model raise the scope of possible upscaling of the fixed-bed column. Hence, it is proposed that these River sand-FeAl(BDC)-based filters can be widely used in areas facing critical contamination and in poor communities with a high demand for water.