1. R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference, 580–587. 2014.
2. A. Graves and N. Jaitly. Towards end-to-end speech recognition with recurrent neural networks. In Proceedings of the 31st International Conference on Machine Learning (ICML14), 1764–1772. 2014.
3. Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Deepface: Closing the gap to human-level performance in face verification. In Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on, 1701–1708. 2014. IEEE.
4. Leslie N. Smith. Cyclical Learning Rates for Training Neural Networks. 2017. arXiv:1506.01186v6.
5. Wilson, R.C., Shenhav, A., Straccia, M. et al. The Eighty Five Percent Rule for optimal learning. Nat Commun 10, 4646. 2019. https://doi.org/10.1038/s41467-019-12552-4.
6. Santanu Pattanayak. A Mathematical Approach to Advanced Artificial Intelligence in Python. Pro Deep Learning with TensorFlow. 2017. DOI: 10.1007/978-1-4842-3096-1.
7. Bukhari, S. T., & Mohy-Ud-Din, H. A systematic evaluation of learning rate policies in training CNNs for brain tumor segmentation. Physics in medicine and biology, 66(10), 10.1088/1361-6560/abe3d3. 2021. https://doi.org/10.1088/1361-6560/abe3d3
8. Wang X, Peng Y, Lu L, Lu Z, Bagheri M, Summers RM. ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases. IEEE CVPR. 2017.
9. Zhang, S. W., Zhang, X. X., Fan, X. N., & Li, W. N. LPI-CNNCP: Prediction of lncRNA-protein interactions by using convolutional neural network with the copy-padding trick. Analytical biochemistry, 601, 113767. 2020. https://doi.org/10.1016/j.ab.2020.113767.
10. Chollet, F., & others. Keras. GitHub. 2015. Retrieved from https://github.com/fchollet/keras
11. Carl F. Sabottke & Bradley M. Spieler. The Effect of Image Resolution on Deep Learning in Radiography. Radiology: Artificial Intelligence. 2(1):e190015. 2020. https://doi.org/10.1148/ryai.2019190015
12. Pang, S., Wang, S., Rodríguez-Patón, A., Li, P., & Wang, X. An artificial intelligent diagnostic system on mobile Android terminals for cholelithiasis by lightweight convolutional neural network. PloS one, 14(9), e0221720. 2019. https://doi.org/10.1371/journal.pone.0221720
13. Min Lin, Qiang Chen, Shuicheng Yan. Network in Network. 2014. https://arxiv.org/pdf/1312.4400v3.pdf.
14. Dai, H., Cao, J., Wang, T., Deng, M., & Yang, Z. Multilayer one-class extreme learning machine. Neural networks: the official journal of the International Neural Network Society, 115, 11–22. 2019. https://doi.org/10.1016/j.neunet.2019.03.004
15. Chen, J., Wan, Z., Zhang, J., Li, W., Chen, Y., Li, Y., & Duan, Y. Medical image segmentation and reconstruction of prostate tumor based on 3D AlexNet. Computer methods and programs in biomedicine, 200, 105878. 2021. https://doi.org/10.1016/j.cmpb.2020.105878
16. Urinbayev, K., Orazbek, Y., Nurambek, Y., Mirzakhmetov, A., & Varol, H. A. End-to-End Deep Diagnosis of X-ray Images. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference, 2182–2185. 2020. https://doi.org/10.1109/EMBC44109.2020.9175208
17. Cheng-Hao Tu, Yi-Ming Chan, Jia-Hong Lee, Chu-Song Chen. Pruning Depthwise Separable Convolutions for MobileNet Compression. IEEE WCCI. 2020. DOI: 10.1109/IJCNN48605.2020.9207259
18. L. N. Smith and N. Topin, “Super-Convergence: Very Fast Training of Neural Networks Using Large Learning Rates,” arXiv e-prints, p. arXiv:1708.07120, Aug 2017.
19. L. N. Smith, “Cyclical Learning Rates for Training Neural Networks,” arXiv e-prints, p. arXiv:1506.01186, Jun. 2015.
20. P. Goyal, P. Dollar, R. B. Girshick, P. Noordhuis, L. Wesolowski, ´ A. Kyrola, A. Tulloch, Y. Jia, and K. He, “Accurate, large minibatch SGD: training imagenet in 1 hour,” CoRR, vol. abs/1706.02677, 2017. [Online]. Available: http://arxiv.org/abs/1706.02677
21. H. Zulkifli, “”understanding learning rates and how it improves performance in deep learning”,” https://towardsdatascience.com/ understanding-learning-rates-and-how-it-improves-performance-indeep-learning-d0d4059c1c10, 2018, [Online; accessed 23-Sep-2018].
22. F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Sequential modelbased optimization for general algorithm configuration,” in Learning and Intelligent Optimization, C. A. C. Coello, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 507–523. 2011.
23. Hyperopt Developers, “”hyperopt — distributed asynchronous hyperparameter optimization in python”,” http://hyperopt.github.io/hyperopt/, 2019, [Online; accessed 13-Aug-2019].
24. T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna: A nextgeneration hyperparameter optimization framework,” in Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, ser. KDD ’19. New York, NY, USA: ACM, pp. 2623–2631. 2019.
25. Buduma, Nikhil; Locascio, Nicholas. Fundamentals of Deep Learning : Designing Next-Generation Machine Intelligence Algorithms. O'Reilly. p. 21. ISBN 978-1-4919-2558-4. 2017.