1. Tsien, R. Y. The Green Fluorescent Protein. Annu. Rev. Biochem. 67, 509–544 (1998).
2. Olenych, S. G., Claxton, N. S., Ottenberg, G. K. & Davidson, M. W. The Fluorescent Protein Color Palette. Curr. Protoc. Cell Biol. 36, 21.5.1-21.5.34 (2007).
3. Matz, M. V et al. Fluorescent proteins from nonbioluminescent Anthozoa species. Nat. Biotechnol. 17, 969–973 (1999).
4. Lukyanov, K. A. et al. Natural animal coloration can be determined by a nonfluorescent green fluorescent protein homolog. J. Biol. Chem. 275, 25879–25882 (2000).
5. Hoi, H. et al. A Monomeric Photoconvertible Fluorescent Protein for Imaging of Dynamic Protein Localization. J. Mol. Biol. 401, 776–791 (2010).
6. Dickson, R. M., Cubittt, A. B., Tsient, R. Y. & Moerner, W. E. On/off blinking and switching behaviour of single molecules of green fluorescent protein. Nature 388, 355–358 (1997).
7. Ando, R., Hama, H., Yamamoto-hino, M., Mizuno, H. & Miyawaki, A. An optical marker based on the UV-induced green- to-red photoconversion of a fluorescent protein. Proc. Natl. Acad. Sci. 99, 12651–12656 (2002).
8. Adam, V. et al. Structural characterization of IrisFP, an optical highlighter undergoing multiple photo-induced transformations. Proc. Natl. Acad. Sci. 105, 18343–18348 (2008).
9. Adam, V. et al. Rational design of photoconvertible and biphotochromic fluorescent proteins for advanced microscopy applications. Chem. Biol. 18, 1241–1251 (2011).
10. Moeyaert, B. et al. Green-to-red photoconvertible dronpa mutant for multimodal super-resolution fluorescence microscopy. ACS Nano 8, 1664–1673 (2014).
11. Lapshin, G. et al. Fluorescence color diversity of great barrier reef corals. J. Innov. Opt. Health Sci. 08, 1550028 (2015).
12. Pédelacq, J. D., Cabantous, S., Tran, T., Terwilliger, T. C. & Waldo, G. S. Engineering and characterization of a superfolder green fluorescent protein. Nat. Biotechnol. 24, 79–88 (2006).
13. Shinoda, H., Shannon, M. & Nagai, T. Fluorescent proteins for investigating biological events in acidic environments. Int. J. Mol. Sci. 19, (2018).
14. Costantini, L. M. et al. A palette of fluorescent proteins optimized for diverse cellular environments. Nat. Commun. 6, 7670 (2015).
15. Kaberniuk, A. A., Morano, N. C., Verkhusha, V. V. & Snapp, E. L. moxDendra2: an inert photoswitchable protein for oxidizing environments. Chem. Commun. 53, 2106–2109 (2017).
16. Kaberniuk, A. A., Mohr, M. A., Verkhusha, V. V. & Snapp, E. L. moxMaple3: a Photoswitchable Fluorescent Protein for PALM and Protein Highlighting in Oxidizing Cellular Environments. Sci. Rep. 8, 1–10 (2018).
17. Costantini, L. M., Subach, O. M., Jaureguiberry-bravo, M., Verkhusha, V. V. & Snapp, E. L. Cysteineless non-glycosylated monomeric blue fluorescent protein, secBFP2, for studies in the eukaryotic secretory pathway. Biochem. Biophys. Res. Commun. 430, 1114–1119 (2013).
18. Suzuki, T. et al. Development of cysteine-free fluorescent proteins for the oxidative environment. PLoS One 7, e37551 (2012).
19. Stepanenko, O. V. et al. Modern fluorescent proteins: From chromophore formation to novel intracellular applications. Biotechniques 51, 313–327 (2011).
20. Heim, R. & Tsien, R. Y. Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr. Biol. 6, 178–182 (1996).
21. Barondeau, D. P., Kassmann, C. J., Tainer, J. A. & Getzoff, E. D. The case of the missing ring: Radical cleavage of a carbon-carbon bond and implications for GFP chromophore biosynthesis. J. Am. Chem. Soc. 129, 3118–3126 (2007).
22. Cormack, B. P., Valdivia, R. H. & Falkow, S. FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173, 33–38 (1996).
23. Ormo, M. et al. Crystal structure of the Aequorea victoria green fluorescent protein. Science (80-. ). 273, 1392–1395 (1996).
24. Shaner, N. C. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 22, 1567–1572 (2004).
25. Chang, H. et al. A unique series of reversibly switchable fluorescent proteins with beneficial properties for various applications. Proc. Natl. Acad. Sci. 109, 4455–4460 (2012).
26. Ando, R., Hama, H., Yamamoto-Hino, M., Mizuno, H. & Miyawaki, A. An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein. Proc. Natl. Acad. Sci. 99, 12651–12656 (2002).
27. Solovyev, I., Gavshina, A. & Savitsky, A. Reversible photobleaching of photoconvertible SAASoti-FP. J. Biomed. Photonics Eng. 3, 040303 (2017).
28. Solovyev, I. D. et al. Monomerization of the photoconvertible fluorescent protein SAASoti by rational mutagenesis of single amino acids. Sci. Rep. 8, 1–14 (2018).
29. Gavshina, A.V., Marynich, N.K., Khrenova, M.G., Solovyev, I.D., Savitsky, A.P. The Role of Cysteine Residues in the Allosteric Modulation of the Chromophore Phototransformations of Biphotochromic Fluorescent Protein SAASoti. In print at Sci. Rep. Submission ID c95c17c8-27f8-4791-a284-f9db69aff741 (2021).
30. Jain, R. K., Joyce, P. B. M., Molinete, M., Halban, P. A. & Gorr, S.-U. Oligomerization of green fluorescent protein in the secretory pathway of endocrine cells. Biochem. J. 360, 645–649 (2015).
31. Andresen, M. et al. Photoswitchable fluorescent proteins enable monochromatic multilabel imaging and dual color fluorescence nanoscopy. Nat. Biotechnol. 26, 1035–1040 (2008).
32. Grotjohann, T. et al. rsEGFP2 enables fast RESOLFT nanoscopy of living cells. Elife 2012, 1–14 (2012).
33. El Khatib, M., Martins, A., Bourgeois, D., Colletier, J. P. & Adam, V. Rational design of ultrastable and reversibly photoswitchable fluorescent proteins for super-resolution imaging of the bacterial periplasm. Sci. Rep. 6, 1–12 (2016).
34. Shinoda, H. et al. Acid-Tolerant Monomeric GFP from Olindias formosa. Cell Chem. Biol. 25, 330-338.e7 (2018).
35. Kao, Y. T., Zhu, X. & Min, W. Protein-flexibility mediated coupling between photoswitching kinetics and surrounding viscosity of a photochromic fluorescent protein. Proc. Natl. Acad. Sci. U. S. A. 109, 3220–3225 (2012).
36. Stiel, A. C. et al. 1.8 Å bright-state structure of the reversibly switchable fluorescent protein Dronpa guides the generation of fast switching variants. Biochem. J. 402, 35–42 (2007).
37. Duan, C. et al. Rational design of enhanced photoresistance in a photoswitchable fluorescent protein. Methods Appl. Fluoresc. 3, 14004 (2015).
38. Anstöter, C., Caine, B. A. & Popelier, P. L. A. The AIBLHiCoS Method: Predicting Aqueous pKa Values from Gas-Phase Equilibrium Bond Lengths. J. Chem. Inf. Model. 56, 471–483 (2016).
39. Best, R. B. et al. Optimization of the Additive CHARMM All-Atom Protein Force Field Targeting Improved Sampling of the Backbone ϕ, ψ and Side-Chain χ1 and χ2 Dihedral Angles. J. Chem. Theory Comput. 8, 3257–3273 (2012).
40. Vanommeslaeghe, K. et al. CHARMM general force field (CGenFF): A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem. 31, 671–690 (2010).
41. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).
42. Phillips, J. C. et al. Scalable molecular dynamics on CPU and GPU architectures with NAMD. J. Chem. Phys. 153, 044130 (2020).
43. Adamo, C. & Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 110, 6158 (1999).
44. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).
45. Melo, M. C. R. et al. NAMD goes quantum: An integrative suite for QM/MM simulations. Nat. Methods 15, 351 (2018).
46. Seritan, S. et al. TeraChem : A graphical processing unit-accelerated electronic structure package for large-scale ab initio molecular dynamics. WIREs Comput. Mol. Sci. 11, e1494 (2020).