Study setting and design
A retrospective multicentre ecological analysis was undertaken evaluating all blood culture (BC) samples from adults (aged 17 years and above) over a three-year period from 01 April 2017 to 30 April 2020 across six acute hospitals in London, serving a population approximating three million.
A hub-and-spoke laboratory network with a centralized microbiology laboratory processes samples from multiple hospitals in accordance with UK laboratory standard operating procedures (10) with minor local variation. BCs were collected at each hospital, without pre-incubation, and transported to the centralized laboratory. They were subsequently incubated using a BACTEC system (Becton Dickinson, Franklin Lakes, NJ, USA). Organisms were identified by matrix assisted laser desorption/ionisation-time-of-flight (MALDI-TOF) mass spectroscopy (Bruker Daltonik GmbH, Bremen, Germany). Susceptibility testing was undertaken using disk diffusion using European Committee on Antimicrobial Susceptibility testing methods and interpretative criteria (11).
Data collection
Microbiological data was extracted from Sunquest Laboratory V8.3 (Tucson, AZ, USA). For the purposes of this study, Enterobacterales included Escherichia coli, Klebsiella spp., Serratia spp., Enterobacter spp., Proteus spp., Citrobacter spp., Hafnia spp., Morganella spp., and Pantoea spp. All CoNS, S.pneumoniae and S.aureus isolated from BCs were included; the seasonality of the latter two has been extensively described (12-15). If more than one pathogen was isolated from a BC, each was recorded individually at either genus or species level. Samples with multiple Enterobacterales or CoNS were recorded as a single positive BC. Repeated positives within a 14-day period were not de-duplicated and patient records were not assessed to determine if CoNS BSIs represented true infection.
Data analysis
To explore seasonal variations in BSI rates, results were classified as spring (March–May), summer (June–August), autumn (September–November) and winter (December–February). For spring 2017, only April and May data were available. March and April 2020 were considered as the period when social distancing measures were in place, encompassing the UK COVID-19 peak (16). The same period in 2019 was analysed for comparison.
To explore changing trends in BCs results during COVID-19, two different statistical models were used; both (first) allowing for seasonality, and (second) then separately obviating any potential seasonality. The first method was a time-series analysis performed in R (R Core Team). After testing for the absence of first-order autocorrelations with the Durbin-Watson statistic, univariable autoregressive integrated moving average (ARIMA) models were fitted to data from CoNS, Enterobacterales, S.pneumoniae, and S.aureus from April 2017 to December 2019. These models were used to forecast estimated BSI rates for January to June 2020. To explore differences between observed and expected BSI rates during the COVID-19 peak, they were graphically compared.
The second method was a linear trend analysis of variations in observed rates of BSIs. Z-scores were calculated for Enterobacterales, CoNS, S.penumoniae and S.aureus using SPSS (IBM Corp, Armonk, NY, USA). Data were checked for normality using the Shapiro-Wilk test. Where non-normal distribution was identified, data were transformed prior to analysis. Z-scores were then calculated each month by applying the standard formula z = (x-μ)/σ (x = raw score, μ = mean, σ = standard deviation). Statistical significance for z-scores were determined using R (R Core Team).
Study approval
This analysis was registered with North West London Pathology hosted by Imperial College Healthcare NHS Trust as a service evaluation (reference PAT_012) to investigate BC contamination rates. Individual consent was not indicated for this ecological level analysis reporting only aggregated data.