[1] Huguet I, Grossman AB and O'Toole D. Changes in the Epidemiology of Neuroendocrine Tumours. Neuroendocrinology, 2017. 104(2): p. 105-111.
[2] Pavel M and de Herder WW. ENETS Consensus Guidelines for the Standard of Care in Neuroendocrine Tumors. Neuroendocrinology, 2017. 105(3): p. 193-195.
[3] Auernhammer CJ, Spitzweg C, Bock S, Knosel T and Bartenstein P. [Current standards and novel developments in the treatment of neuroendocrine tumors of the gastroenteropancreatic system]. Dtsch Med Wochenschr, 2019. 144(20): p. 1390-1395.
[4] Grillo F, Florio T, Ferrau F, Kara E, Fanciulli G, Faggiano A, Colao A and Group N. Emerging multitarget tyrosine kinase inhibitors in the treatment of neuroendocrine neoplasms. Endocr Relat Cancer, 2018. 25(9): p. R453-R466.
[5] Jin XF, Auernhammer CJ, Ilhan H, Lindner S, Nolting S, Maurer J, Spottl G and Orth M. Combination of 5-Fluorouracil with Epigenetic Modifiers Induces Radiosensitization, Somatostatin Receptor 2 Expression, and Radioligand Binding in Neuroendocrine Tumor Cells In Vitro. J Nucl Med, 2019. 60(9): p. 1240-1246.
[6] Aristizabal Prada ET and Auernhammer CJ. Targeted therapy of gastroenteropancreatic neuroendocrine tumours: preclinical strategies and future targets. Endocr Connect, 2018. 7(1): p. R1-R25.
[7] Kloker LD, Berchtold S, Smirnow I, Schaller M, Fehrenbacher B, Krieg A, Sipos B and Lauer UM. The Oncolytic Herpes Simplex Virus Talimogene Laherparepvec Shows Promising Efficacy in Neuroendocrine Cancer Cell Lines. Neuroendocrinology, 2019.
[8] Essand M. Virotherapy of neuroendocrine tumors. Neuroendocrinology, 2013. 97(1): p. 26-34.
[9] Yu D, Leja-Jarblad J, Loskog A, Hellman P, Giandomenico V, Oberg K and Essand M. Preclinical Evaluation of AdVince, an Oncolytic Adenovirus Adapted for Treatment of Liver Metastases from Neuroendocrine Cancer. Neuroendocrinology, 2017. 105(1): p. 54-66.
[10] Rudin CM, Poirier JT, Senzer NN, Stephenson J, Jr., Loesch D, Burroughs KD, Reddy PS, Hann CL and Hallenbeck PL. Phase I clinical study of Seneca Valley Virus (SVV-001), a replication-competent picornavirus, in advanced solid tumors with neuroendocrine features. Clin Cancer Res, 2011. 17(4): p. 888-95.
[11] Zhang Q, Yu YA, Wang E, Chen N, Danner RL, Munson PJ, Marincola FM and Szalay AA. Eradication of solid human breast tumors in nude mice with an intravenously injected light-emitting oncolytic vaccinia virus. Cancer Res, 2007. 67(20): p. 10038-46.
[12] Zhang Q, Liang C, Yu YA, Chen N, Dandekar T and Szalay AA. The highly attenuated oncolytic recombinant vaccinia virus GLV-1h68: comparative genomic features and the contribution of F14.5L inactivation. Mol Genet Genomics, 2009. 282(4): p. 417-35.
[13] Lauer UM, Schell M, Beil J, Berchtold S, Koppenhofer U, Glatzle J, Konigsrainer A, Mohle R, Nann D, Fend F, et al. Phase I study of oncolytic vaccinia virus GL-ONC1 in patients with peritoneal carcinomatosis. Clin Cancer Res, 2018.
[14] Mell LK, Brumund KT, Daniels GA, Advani SJ, Zakeri K, Wright ME, Onyeama SJ, Weisman RA, Sanghvi PR, Martin PJ, et al. Phase I Trial of Intravenous Oncolytic Vaccinia Virus (GL-ONC1) with Cisplatin and Radiotherapy in Patients with Locoregionally Advanced Head and Neck Carcinoma. Clin Cancer Res, 2017. 23(19): p. 5696-5702.
[15] Lin SF, Price DL, Chen CH, Brader P, Li S, Gonzalez L, Zhang Q, Yu YA, Chen N, Szalay AA, et al. Oncolytic vaccinia virotherapy of anaplastic thyroid cancer in vivo. J Clin Endocrinol Metab, 2008. 93(11): p. 4403-7.
[16] Pugalenthi A, Mojica K, Ady JW, Johnsen C, Love D, Chen NG, Aguilar RJ, Szalay AA and Fong Y. Recombinant vaccinia virus GLV-1h68 is a promising oncolytic vector in the treatment of cholangiocarcinoma. Cancer Gene Ther, 2015. 22(12): p. 591-6.
[17] Hofmann E, Weibel S and Szalay AA. Combination treatment with oncolytic Vaccinia virus and cyclophosphamide results in synergistic antitumor effects in human lung adenocarcinoma bearing mice. J Transl Med, 2014. 12: p. 197.
[18] Wilkinson MJ, Smith HG, Pencavel TD, Mansfield DC, Kyula-Currie J, Khan AA, McEntee G, Roulstone V, Hayes AJ and Harrington KJ. Isolated limb perfusion with biochemotherapy and oncolytic virotherapy combines with radiotherapy and surgery to overcome treatment resistance in an animal model of extremity soft tissue sarcoma. Int J Cancer, 2016. 139(6): p. 1414-22.
[19] Kyula JN, Khan AA, Mansfield D, Karapanagiotou EM, McLaughlin M, Roulstone V, Zaidi S, Pencavel T, Touchefeu Y, Seth R, et al. Synergistic cytotoxicity of radiation and oncolytic Lister strain vaccinia in (V600D/E)BRAF mutant melanoma depends on JNK and TNF-alpha signaling. Oncogene, 2014. 33(13): p. 1700-12.
[20] Binz E, Berchtold S, Beil J, Schell M, Geisler C, Smirnow I and Lauer UM. Chemovirotherapy of Pancreatic Adenocarcinoma by Combining Oncolytic Vaccinia Virus GLV-1h68 with nab-Paclitaxel Plus Gemcitabine. Mol Ther Oncolytics, 2017. 6: p. 10-21.
[21] Advani SJ, Buckel L, Chen NG, Scanderbeg DJ, Geissinger U, Zhang Q, Yu YA, Aguilar RJ, Mundt AJ and Szalay AA. Preferential replication of systemically delivered oncolytic vaccinia virus in focally irradiated glioma xenografts. Clin Cancer Res, 2012. 18(9): p. 2579-90.
[22] Evgin L, Acuna SA, Tanese de Souza C, Marguerie M, Lemay CG, Ilkow CS, Findlay CS, Falls T, Parato KA, Hanwell D, et al. Complement inhibition prevents oncolytic vaccinia virus neutralization in immune humans and cynomolgus macaques. Mol Ther, 2015. 23(6): p. 1066-1076.
[23] Kim J, Hall RR, Lesniak MS and Ahmed AU. Stem Cell-Based Cell Carrier for Targeted Oncolytic Virotherapy: Translational Opportunity and Open Questions. Viruses, 2015. 7(12): p. 6200-17.
[24] Minev BR, Lander E, Feller JF, Berman M, Greenwood BM, Minev I, Santidrian AF, Nguyen D, Draganov D, Killinc MO, et al. First-in-human study of TK-positive oncolytic vaccinia virus delivered by adipose stromal vascular fraction cells. J Transl Med, 2019. 17(1): p. 271.
[25] Daskalakis K, Tsoli M, Angelousi A, Kassi E, Alexandraki K, Kolomodi D, Kaltsas G and Koumarianou A. Anti-tumour activity of everolimus and sunitinib in neuroendocrine neoplasms. Endocr Connect, 2019.
[26] Yoo C, Cho H, Song MJ, Hong SM, Kim KP, Chang HM, Chae H, Kim TW, Hong YS, Ryu MH, et al. Efficacy and safety of everolimus and sunitinib in patients with gastroenteropancreatic neuroendocrine tumor. Cancer Chemother Pharmacol, 2017. 79(1): p. 139-146.
[27] Angelousi A, Kamp K, Kaltsatou M, O'Toole D, Kaltsas G and de Herder W. Sequential Everolimus and Sunitinib Treatment in Pancreatic Metastatic Well-Differentiated Neuroendocrine Tumours Resistant to Prior Treatments. Neuroendocrinology, 2017. 105(4): p. 394-402.
[28] Takahashi T, Nau MM, Chiba I, Birrer MJ, Rosenberg RK, Vinocour M, Levitt M, Pass H, Gazdar AF and Minna JD. p53: a frequent target for genetic abnormalities in lung cancer. Science, 1989. 246(4929): p. 491-4.
[29] Giaccone G, Battey J, Gazdar AF, Oie H, Draoui M and Moody TW. Neuromedin B is present in lung cancer cell lines. Cancer Res, 1992. 52(9 Suppl): p. 2732s-2736s.
[30] Evers BM, Ishizuka J, Townsend CM, Jr. and Thompson JC. The human carcinoid cell line, BON. A model system for the study of carcinoid tumors. Ann N Y Acad Sci, 1994. 733: p. 393-406.
[31] Kaku M, Nishiyama T, Yagawa K and Abe M. Establishment of a carcinoembryonic antigen-producing cell line from human pancreatic carcinoma. Gan, 1980. 71(5): p. 596-601.
[32] Linnebacher M, Maletzki C, Ostwald C, Klier U, Krohn M, Klar E and Prall F. Cryopreservation of human colorectal carcinomas prior to xenografting. BMC Cancer, 2010. 10: p. 362.
[33] Krieg A, Mersch S, Boeck I, Dizdar L, Weihe E, Hilal Z, Krausch M, Mohlendick B, Topp SA, Piekorz RP, et al. New model for gastroenteropancreatic large-cell neuroendocrine carcinoma: establishment of two clinically relevant cell lines. PLoS One, 2014. 9(2): p. e88713.
[34] Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, Warren JT, Bokesch H, Kenney S and Boyd MR. New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst, 1990. 82(13): p. 1107-12.
[35] Xing JZ, Zhu L, Jackson JA, Gabos S, Sun XJ, Wang XB and Xu X. Dynamic monitoring of cytotoxicity on microelectronic sensors. Chem Res Toxicol, 2005. 18(2): p. 154-61.
[36] Kirn DH and Thorne SH. Targeted and armed oncolytic poxviruses: a novel multi-mechanistic therapeutic class for cancer. Nat Rev Cancer, 2009. 9(1): p. 64-71.
[37] Tolonen N, Doglio L, Schleich S and Krijnse Locker J. Vaccinia virus DNA replication occurs in endoplasmic reticulum-enclosed cytoplasmic mini-nuclei. Mol Biol Cell, 2001. 12(7): p. 2031-46.
[38] Walsh SR and Dolin R. Vaccinia viruses: vaccines against smallpox and vectors against infectious diseases and tumors. Expert Rev Vaccines, 2011. 10(8): p. 1221-40.
[39] Worschech A, Chen N, Yu YA, Zhang Q, Pos Z, Weibel S, Raab V, Sabatino M, Monaco A, Liu H, et al. Systemic treatment of xenografts with vaccinia virus GLV-1h68 reveals the immunologic facet of oncolytic therapy. BMC Genomics, 2009. 10: p. 301.
[40] Mastrangelo MJ, Maguire HC, Jr., Eisenlohr LC, Laughlin CE, Monken CE, McCue PA, Kovatich AJ and Lattime EC. Intratumoral recombinant GM-CSF-encoding virus as gene therapy in patients with cutaneous melanoma. Cancer Gene Ther, 1999. 6(5): p. 409-22.
[41] Tsoneva D, Minev B, Frentzen A, Zhang Q, Wege AK and Szalay AA. Humanized Mice with Subcutaneous Human Solid Tumors for Immune Response Analysis of Vaccinia Virus-Mediated Oncolysis. Mol Ther Oncolytics, 2017. 5: p. 41-61.
[42] Smith HG, Mansfield D, Roulstone V, Kyula-Currie JN, McLaughlin M, Patel RR, Bergerhoff KF, Paget JT, Dillon MT, Khan A, et al. PD-1 Blockade Following Isolated Limb Perfusion with Vaccinia Virus Prevents Local and Distant Relapse of Soft-tissue Sarcoma. Clin Cancer Res, 2019. 25(11): p. 3443-3454.
[43] Tappe KA, Budida R, Stankov MV, Frenz T, H RS, Volz A, Sutter G, Kalinke U and Behrens GMN. Immunogenic cell death of dendritic cells following modified vaccinia virus Ankara infection enhances CD8(+) T cell proliferation. Eur J Immunol, 2018. 48(12): p. 2042-2054.
[44] Ehrig K, Kilinc MO, Chen NG, Stritzker J, Buckel L, Zhang Q and Szalay AA. Growth inhibition of different human colorectal cancer xenografts after a single intravenous injection of oncolytic vaccinia virus GLV-1h68. J Transl Med, 2013. 11: p. 79.
[45] Ma XM and Blenis J. Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol, 2009. 10(5): p. 307-18.
[46] Lun XQ, Jang JH, Tang N, Deng H, Head R, Bell JC, Stojdl DF, Nutt CL, Senger DL, Forsyth PA, et al. Efficacy of systemically administered oncolytic vaccinia virotherapy for malignant gliomas is enhanced by combination therapy with rapamycin or cyclophosphamide. Clin Cancer Res, 2009. 15(8): p. 2777-88.
[47] Lun X, Chan J, Zhou H, Sun B, Kelly JJ, Stechishin OO, Bell JC, Parato K, Hu K, Vaillant D, et al. Efficacy and safety/toxicity study of recombinant vaccinia virus JX-594 in two immunocompetent animal models of glioma. Mol Ther, 2010. 18(11): p. 1927-36.
[48] Kim M, Nitschke M, Sennino B, Murer P, Schriver BJ, Bell A, Subramanian A, McDonald CE, Wang J, Cha H, et al. Amplification of Oncolytic Vaccinia Virus Widespread Tumor Cell Killing by Sunitinib through Multiple Mechanisms. Cancer Res, 2018. 78(4): p. 922-937.
[49] Yu YA, Galanis C, Woo Y, Chen N, Zhang Q, Fong Y and Szalay AA. Regression of human pancreatic tumor xenografts in mice after a single systemic injection of recombinant vaccinia virus GLV-1h68. Mol Cancer Ther, 2009. 8(1): p. 141-51.
[50] Malfitano AM, Di Somma S, Iannuzzi CA, Pentimalli F and Portella G. Virotherapy: from single agents to combinatorial treatments. Biochem Pharmacol, 2020: p. 113986.
[51] Heise C, Lemmon M and Kirn D. Efficacy with a replication-selective adenovirus plus cisplatin-based chemotherapy: dependence on sequencing but not p53 functional status or route of administration. Clin Cancer Res, 2000. 6(12): p. 4908-14.
[52] Binz E and Lauer UM. Chemovirotherapy: combining chemotherapeutic treatment with oncolytic virotherapy. Oncolytic Virother, 2015. 4: p. 39-48.