1 Braunwald, E. Myocardial reperfusion, limitation of infarct size, reduction of left ventricular dysfunction, and improved survival. Should the paradigm be expanded? Circulation79, 441-444 (1989).
2 Gottlieb, R. A., Burleson, K. O., Kloner, R. A., Babior, B. M. & Engler, R. L. Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest94, 1621-1628, doi:10.1172/JCI117504 (1994).
3 Kajstura, J. et al. Apoptotic and necrotic myocyte cell deaths are independent contributing variables of infarct size in rats. Laboratory investigation; a journal of technical methods and pathology74, 86-107 (1996).
4 Roubille, F. et al. Delayed postconditioning in the mouse heart in vivo. Circulation124, 1330-1336, doi:CIRCULATIONAHA.111.031864 [pii]
10.1161/CIRCULATIONAHA.111.031864 (2011).
5 Logue, S. E., Gustafsson, A. B., Samali, A. & Gottlieb, R. A. Ischemia/reperfusion injury at the intersection with cell death. J Mol Cell Cardiol38, 21-33, doi:S0022-2828(04)00330-X [pii]
10.1016/j.yjmcc.2004.11.009 (2005).
6 McCully, J. D., Wakiyama, H., Hsieh, Y. J., Jones, M. & Levitsky, S. Differential contribution of necrosis and apoptosis in myocardial ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol286, H1923-1935, doi:10.1152/ajpheart.00935.2003 (2004).
7 Holly, T. A. et al. Caspase inhibition reduces myocyte cell death induced by myocardial ischemia and reperfusion in vivo. J Mol Cell Cardiol31, 1709-1715, doi:10.1006/jmcc.1999.1006 (1999).
8 Saraste, A. et al. Apoptosis in human acute myocardial infarction. Circulation95, 320-323, doi:10.1161/01.cir.95.2.320 (1997).
9 Chen, Z., Chua, C. C., Ho, Y. S., Hamdy, R. C. & Chua, B. H. Overexpression of Bcl-2 attenuates apoptosis and protects against myocardial I/R injury in transgenic mice. Am J Physiol Heart Circ Physiol280, H2313-2320 (2001).
10 Miao, W., Luo, Z., Kitsis, R. N. & Walsh, K. Intracoronary, adenovirus-mediated Akt gene transfer in heart limits infarct size following ischemia-reperfusion injury in vivo. J Mol Cell Cardiol32, 2397-2402, doi:10.1006/jmcc.2000.1283
S0022-2828(00)91283-5 [pii] (2000).
11 Piot, C. A., Martini, J. F., Bui, S. K. & Wolfe, C. L. Ischemic preconditioning attenuates ischemia/reperfusion-induced activation of caspases and subsequent cleavage of poly(ADP-ribose) polymerase in rat hearts in vivo. Cardiovasc Res44, 536-542, doi:S0008636399002278 [pii] (1999).
12 Roubille, F. et al. Myocardial expression of a dominant-negative form of Daxx decreases infarct size and attenuates apoptosis in an in vivo mouse model of ischemia/reperfusion injury. Circulation116, 2709-2717, doi:CIRCULATIONAHA.107.694844 [pii]
10.1161/CIRCULATIONAHA.107.694844 (2007).
13 Yaoita, H., Ogawa, K., Maehara, K. & Maruyama, Y. Attenuation of ischemia/reperfusion injury in rats by a caspase inhibitor. Circulation97, 276-281 (1998).
14 Boisguérin, P. et al. A novel therapeutic peptide targeting myocardial reperfusion injury. Cardiovasc Res116, 633-644, doi:10.1093/cvr/cvz145 (2020).
15 Boisguerin, P. et al. Systemic delivery of BH4 anti-apoptotic peptide using CPPs prevents cardiac ischemia-reperfusion injuries in vivo. J Control Release156, 146-153, doi:S0168-3659(11)00564-5 [pii]
10.1016/j.jconrel.2011.07.037 (2011).
16 Souktani, R. et al. Cardioprotection against myocardial infarction with PTD-BIR3/RING, a XIAP mimicking protein. J Mol Cell Cardiol46, 713-718, doi:S0022-2828(09)00055-8 [pii]
10.1016/j.yjmcc.2009.02.005 (2009).
17 Karantalis, V. & Hare, J. M. Use of mesenchymal stem cells for therapy of cardiac disease. Circ Res116, 1413-1430, doi:10.1161/circresaha.116.303614 (2015).
18 Sanina, C. & Hare, J. M. Mesenchymal Stem Cells as a Biological Drug for Heart Disease: Where Are We With Cardiac Cell-Based Therapy? Circ Res117, 229-233, doi:10.1161/circresaha.117.306306 (2015).
19 Cashman, T. J., Gouon-Evans, V. & Costa, K. D. Mesenchymal stem cells for cardiac therapy: practical challenges and potential mechanisms. Stem Cell Rev Rep9, 254-265, doi:10.1007/s12015-012-9375-6 (2013).
20 Tompkins, B. A. et al. Preclinical Studies of Stem Cell Therapy for Heart Disease. Circ Res122, 1006-1020, doi:10.1161/CIRCRESAHA.117.312486 (2018).
21 Llano, R. et al. Intracoronary delivery of mesenchymal stem cells at high flow rates after myocardial infarction improves distal coronary blood flow and decreases mortality in pigs. Catheter Cardiovasc Interv73, 251-257, doi:10.1002/ccd.21781 (2009).
22 Jeong, H. et al. Mesenchymal Stem Cell Therapy for Ischemic Heart Disease: Systematic Review and Meta-analysis. International journal of stem cells, doi:10.15283/ijsc17061 (2018).
23 Roncalli, J. et al. Intracoronary autologous mononucleated bone marrow cell infusion for acute myocardial infarction: results of the randomized multicenter BONAMI trial. European heart journal32, 1748-1757, doi:10.1093/eurheartj/ehq455 (2011).
24 Chen, Z., Chen, L., Zeng, C. & Wang, W. E. Functionally Improved Mesenchymal Stem Cells to Better Treat Myocardial Infarction. Stem Cells Int2018, 7045245, doi:10.1155/2018/7045245 (2018).
25 Zhou, H. & Toan, S. Pathological Roles of Mitochondrial Oxidative Stress and Mitochondrial Dynamics in Cardiac Microvascular Ischemia/Reperfusion Injury. Biomolecules10, doi:10.3390/biom10010085 (2020).
26 Wang, J., Toan, S. & Zhou, H. New insights into the role of mitochondria in cardiac microvascular ischemia/reperfusion injury. Angiogenesis23, 299-314, doi:10.1007/s10456-020-09720-2 (2020).
27 Scarabelli, T. M. et al. Different signaling pathways induce apoptosis in endothelial cells and cardiac myocytes during ischemia/reperfusion injury. Circ Res90, 745-748, doi:10.1161/01.res.0000015224.07870.9a (2002).
28 Huang, J. et al. Genetic modification of mesenchymal stem cells overexpressing CCR1 increases cell viability, migration, engraftment, and capillary density in the injured myocardium. Circ Res106, 1753-1762, doi:10.1161/CIRCRESAHA.109.196030 (2010).
29 Liu, H. et al. Donor MSCs release apoptotic bodies to improve myocardial infarction via autophagy regulation in recipient cells. Autophagy, 1-16, doi:10.1080/15548627.2020.1717128 (2020).
30 Han, D. et al. Melatonin facilitates adipose-derived mesenchymal stem cells to repair the murine infarcted heart via the SIRT1 signaling pathway. J Pineal Res60, 178-192, doi:10.1111/jpi.12299 (2016).
31 Yan, W. et al. C1q/Tumor Necrosis Factor-Related Protein-9 Regulates the Fate of Implanted Mesenchymal Stem Cells and Mobilizes Their Protective Effects Against Ischemic Heart Injury via Multiple Novel Signaling Pathways. Circulation136, 2162-2177, doi:10.1161/CIRCULATIONAHA.117.029557 (2017).
32 Vizoso, F. J., Eiro, N., Cid, S., Schneider, J. & Perez-Fernandez, R. Mesenchymal Stem Cell Secretome: Toward Cell-Free Therapeutic Strategies in Regenerative Medicine. International journal of molecular sciences18, doi:10.3390/ijms18091852 (2017).
33 Wagner, K. D. & Wagner, N. Peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) acts as regulator of metabolism linked to multiple cellular functions. Pharmacol Ther125, 423-435, doi:10.1016/j.pharmthera.2009.12.001 (2010).
34 Xin, X., Yang, S., Kowalski, J. & Gerritsen, M. E. Peroxisome proliferator-activated receptor gamma ligands are potent inhibitors of angiogenesis in vitro and in vivo. J Biol Chem274, 9116-9121, doi:10.1074/jbc.274.13.9116 (1999).
35 Bishop-Bailey, D. & Hla, T. Endothelial cell apoptosis induced by the peroxisome proliferator-activated receptor (PPAR) ligand 15-deoxy-Delta12, 14-prostaglandin J2. J Biol Chem274, 17042-17048, doi:10.1074/jbc.274.24.17042 (1999).
36 Bishop-Bailey, D. Peroxisome proliferator-activated receptors in the cardiovascular system. Br J Pharmacol129, 823-834, doi:10.1038/sj.bjp.0703149 (2000).
37 Hatae, T., Wada, M., Yokoyama, C., Shimonishi, M. & Tanabe, T. Prostacyclin-dependent apoptosis mediated by PPAR delta. The Journal of biological chemistry276, 46260-46267, doi:10.1074/jbc.M107180200 (2001).
38 Liou, J. Y., Lee, S., Ghelani, D., Matijevic-Aleksic, N. & Wu, K. K. Protection of endothelial survival by peroxisome proliferator-activated receptor-delta mediated 14-3-3 upregulation. Arteriosclerosis, thrombosis, and vascular biology26, 1481-1487, doi:10.1161/01.Atv.0000223875.14120.93 (2006).
39 Brunelli, L., Cieslik, K. A., Alcorn, J. L., Vatta, M. & Baldini, A. Peroxisome proliferator-activated receptor-delta upregulates 14-3-3 epsilon in human endothelial cells via CCAAT/enhancer binding protein-beta. Circ Res100, e59-71, doi:10.1161/01.Res.0000260805.99076.22 (2007).
40 Pesant, M. et al. Peroxisome proliferator-activated receptor delta (PPARdelta) activation protects H9c2 cardiomyoblasts from oxidative stress-induced apoptosis. Cardiovasc Res69, 440-449, doi:10.1016/j.cardiores.2005.10.019 (2006).
41 Luz-Crawford, P. et al. PPARbeta/delta directs the therapeutic potential of mesenchymal stem cells in arthritis. Annals of the rheumatic diseases, doi:10.1136/annrheumdis-2015-208696 (2016).
42 Bouffi, C., Bony, C., Courties, G., Jorgensen, C. & Noël, D. IL-6-dependent PGE2 secretion by mesenchymal stem cells inhibits local inflammation in experimental arthritis. PloS one5, e14247, doi:10.1371/journal.pone.0014247 (2010).
43 Nernpermpisooth, N. et al. PPARβ/δ is required for mesenchymal stem cell cardioprotective effects in myocardial ischemia-reperfusion injury. Frontiers in cardiovascular medicine, doi:10.3389/fcvm.2021.681002. (2021).
44 Kuznetsov, A. V., Javadov, S., Sickinger, S., Frotschnig, S. & Grimm, M. H9c2 and HL-1 cells demonstrate distinct features of energy metabolism, mitochondrial function and sensitivity to hypoxia-reoxygenation. Biochim Biophys Acta1853, 276-284, doi:10.1016/j.bbamcr.2014.11.015 (2015).
45 Contreras-Lopez, R. A. et al. PPARβ/δ-dependent MSC metabolism determines their immunoregulatory properties. Scientific reports10, 11423, doi:10.1038/s41598-020-68347-x (2020).
46 Luz-Crawford, P. et al. PPARbeta/delta directs the therapeutic potential of mesenchymal stem cells in arthritis. Annals of the rheumatic diseases75, 2166-2174, doi:10.1136/annrheumdis-2015-208696 (2016).
47 Scholtysek, C. et al. PPARβ/δ governs Wnt signaling and bone turnover. Nat Med19, 608-613, doi:10.1038/nm.3146 (2013).
48 Braunwald, E. & Kloner, R. A. Myocardial reperfusion: a double-edged sword? J Clin Invest76, 1713-1719, doi:10.1172/JCI112160 (1985).
49 Piper, H. M. & Garcia-Dorado, D. Prime causes of rapid cardiomyocyte death during reperfusion. Ann Thorac Surg68, 1913-1919, doi:10.1016/s0003-4975(99)01025-5 (1999).
50 Zhao, Z. Q. et al. Progressively developed myocardial apoptotic cell death during late phase of reperfusion. Apoptosis6, 279-290 (2001).
51 Zhu, W., Chen, J., Cong, X., Hu, S. & Chen, X. Hypoxia and serum deprivation-induced apoptosis in mesenchymal stem cells. Stem cells24, 416-425, doi:10.1634/stemcells.2005-0121 (2006).
52 Gao, F. et al. Heat shock protein 90 protects rat mesenchymal stem cells against hypoxia and serum deprivation-induced apoptosis via the PI3K/Akt and ERK1/2 pathways. J Zhejiang Univ Sci B11, 608-617, doi:10.1631/jzus.B1001007 (2010).
53 Tang, Y. L. et al. Improved graft mesenchymal stem cell survival in ischemic heart with a hypoxia-regulated heme oxygenase-1 vector. J Am Coll Cardiol46, 1339-1350, doi:10.1016/j.jacc.2005.05.079 (2005).
54 Li, L., Chen, X., Wang, W. E. & Zeng, C. How to Improve the Survival of Transplanted Mesenchymal Stem Cell in Ischemic Heart? Stem Cells Int2016, 9682757, doi:10.1155/2016/9682757 (2016).
55 Gamdzyk, M. et al. Role of PPAR-β/δ/miR-17/TXNIP pathway in neuronal apoptosis after neonatal hypoxic-ischemic injury in rats. Neuropharmacology140, 150-161, doi:10.1016/j.neuropharm.2018.08.003 (2018).
56 Ward, M. R., Abadeh, A. & Connelly, K. A. Concise Review: Rational Use of Mesenchymal Stem Cells in the Treatment of Ischemic Heart Disease. Stem Cells Transl Med7, 543-550, doi:10.1002/sctm.17-0210 (2018).
57 Covinhes, A. et al. Anti-apoptotic peptide for long term cardioprotection in a mouse model of myocardial ischemia-reperfusion injury. Scientific reports10, 18116, doi:10.1038/s41598-020-75154-x (2020).
58 Wang, Z. et al. Rational transplant timing and dose of mesenchymal stromal cells in patients with acute myocardial infarction: a meta-analysis of randomized controlled trials. Stem cell research & therapy8, 21, doi:10.1186/s13287-016-0450-9 (2017).
59 Bartunek, J. et al. Congestive Heart Failure Cardiopoietic Regenerative Therapy (CHART-1) trial design. European journal of heart failure18, 160-168, doi:10.1002/ejhf.434 (2016).
60 Nernpermpisooth, N. et al. PPARβ/δ Is Required for Mesenchymal Stem Cell Cardioprotective Effects Independently of Their Anti-inflammatory Properties in Myocardial Ischemia-Reperfusion Injury. Frontiers in cardiovascular medicine8, 681002, doi:10.3389/fcvm.2021.681002 (2021).