1. WHO. Cardiovascular diseases (CVDs) 2017 [Available from: https://www.who.int/health-topics/cardiovascular-diseases/#tab=tab_1.
2. Winterbourn CC. Toxicity of iron and hydrogen peroxide: the Fenton reaction. Toxicology Letters. 1995;82-83:969-74.
3. Kehrer JP. The Haber–Weiss reaction and mechanisms of toxicity. Toxicology. 2000;149(1):43-50.
4. Trachootham D, Lu W, Ogasawara MA, Nilsa R-DV, Huang P. Redox regulation of cell survival. Antioxid Redox Signal. 2008;10(8):1343-74.
5. Halliwell B. Biochemistry of oxidative stress. Biochemical Society Transactions. 2007;35(5):1147-50.
6. Holmström KM, Finkel T. Cellular mechanisms and physiological consequences of redox-dependent signalling. Nature Reviews Molecular Cell Biology. 2014;15:411.
7. Betteridge DJ. What is oxidative stress? Metabolism - Clinical and Experimental. 2000;49(2):3-8.
8. Lai MY, Fung PL, Xiaoqiang Y, Zhen-Yu C, Yu H. Reactive Oxygen Species in Vascular Wall. Cardiovascular & Hematological Disorders-Drug Targets. 2006;6(1):1-19.
9. BOULLIER A, BIRD DA, CHANG M-K, DENNIS EA, FRIEDMAN P, GILLOTTE-TAYLOR K, et al. Scavenger Receptors, Oxidized LDL, and Atherosclerosis. Annals of the New York Academy of Sciences. 2001;947(1):214-23.
10. Finch CA, Cook JD, Labbe RF, Culala M. Effect of blood donation on iron stores as evaluated by serum ferritin. Blood. 1977;50(3):441-7.
11. Meyers DG, Strickland D, Maloley PA, Seburg JK, Wilson JE, McManus BF. Possible association of a reduction in cardiovascular events with blood donation. Heart (British Cardiac Society). 1997;78(2):188-93.
12. Sloop GD. Possible association of a reduction in cardiovascular events with blood donation. Heart. 1998;79(4):422.
13. van Jaarsveld H, Pool GF. Beneficial effects of blood donation on high density lipoprotein concentration and the oxidative potential of low density lipoprotein. Atherosclerosis. 2002;161(2):395-402.
14. Borai A, Livingstone C, Farzal A, Baljoon D, Al Sofyani A, Bahijri S, et al. Changes in metabolic indices in response to whole blood donation in male subjects with normal glucose tolerance. Clinical Biochemistry. 2016;49(1):51-6.
15. Vashishta S, Gahlot S, Goyal R. Effect of Menstrual Cycle Phases on Plasma Lipid and Lipoprotein Levels in Regularly Menstruating Women. J Clin Diagn Res. 2017;11(5):CC05-CC7.
16. Prados Madrona D, Fernández Herrera MD, Prados Jiménez D, Gómez Giraldo S, Robles Campos R. Women as whole blood donors: offers, donations and deferrals in the province of Huelva, south-western Spain. Blood Transfus. 2014;12 Suppl 1(Suppl 1):s11-s20.
17. Newman BH, Pichette S, Pichette D, Dzaka E. Adverse effects in blood donors after whole‐blood donation: a study of 1000 blood donors interviewed 3 weeks after whole‐blood donation. Transfusion. 2003;43(5):598-603.
18. Trouern-Trend J, Cable R, Badon S, Newman B, Popovsky M. BLOOD DONORS AND BLOOD COLLECTION-A case-controlled multicenter study of vasovagal reactions in blood donors: Influence of sex, age, donation status, weight, blood pressure, and pulse. Transfusion. 1999;39(3):316-20.
19. Kroll M. Tietz Textbook of Clinical Chemistry, Third Edition. Carl A. Burtis and Edward R. Ashwood, eds. Philadelphia, PA: WB Saunders, 1998, 1917 pp., $195.00. ISBN 0-7216-5610-2. Clinical Chemistry. 1999;45(6):913-4.
20. Worwood M. Chapter 7 - Iron deficiency anaemia and iron overload. In: Lewis SM, Bain BJ, Bates I, editors. Dacie and Lewis Practical Haematology (Tenth Edition). Philadelphia: Churchill Livingstone; 2006. p. 131-60.
21. Ansell BJ, Watson KE, Fogelman AM, Navab M, Fonarow GC. High-Density Lipoprotein Function: Recent Advances. Journal of the American College of Cardiology. 2005;46(10):1792-8.
22. Ansell BJ, Fonarow GC, Fogelman AM. The paradox of dysfunctional high-density lipoprotein. Current Opinion in Lipidology. 2007;18(4):427-34.
23. Riško P, Pláteník J, Buchal R, Potočková J, Kraml PJ. Long-term donors versus non-donor men: Iron metabolism and the atherosclerotic process. Atherosclerosis. 2018;272:14-20.
24. Bani-Ahmad MA, Khabour OF, Gharibeh MY, Alshlool KN. The impact of multiple blood donations on the risk of cardiovascular diseases: Insight of lipid profile. Transfusion Clinique et Biologique. 2017;24(4):410-6.
25. Goldstein JL, Ho YK, Basu SK, Brown MS. Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc Natl Acad Sci U S A. 1979;76(1):333-7.
26. Burtis CA AE, editors. . Tietz Textbook of Clinical
Chemistry. 2nd ed Philadelphia, PA: WB Saunders;. 1994;712–3.
27. Vélez-Carrasco W, Lichtenstein AH, Barrett PH, Sun Z, Dolnikowski GG, Welty FK, et al. Human apolipoprotein A-I kinetics within triglyceride-rich lipoproteins and high density lipoproteins. J Lipid Res. 1999;40(9):1695-700.
28. Tailleux A, Duriez P, Fruchart JC, Clavey V. Apolipoprotein A-II, HDL metabolism and atherosclerosis. Atherosclerosis. 2002;164(1):1-13.
29. Olofsson SO, Borèn J. Apolipoprotein B: a clinically important apolipoprotein which assembles atherogenic lipoproteins and promotes the development of atherosclerosis. J Intern Med. 2005;258(5):395-410.
30. Fairbanks VF FJ, Beutler E. Clinical Disorders of Iron Metabolism
(2nd Ed.). New York: Grune and Stratton Inc,. 1971;1971:46-54.
31. Smith MA, Perry G. Free radical damage, iron, and Alzheimer's disease. Journal of the neurological sciences. 1995;134:92-4.
32. McCord JM, editor Iron, free radicals, and oxidative injury. Seminars in hematology; 1998.
33. Wang S, Qin L, Wu T, Deng B, Sun Y, Hu D, et al. Elevated Cardiac Markers in Chronic Kidney Disease as a Consequence of Hyperphosphatemia-Induced Cardiac Myocyte Injury. Medical Science Monitor : International Medical Journal of Experimental and Clinical Research. 2014;20:2043-53.
34. Elsayed ME, Sharif MU, Stack AG. Chapter Four - Transferrin Saturation: A Body Iron Biomarker. In: Makowski GS, editor. Advances in Clinical Chemistry. 75: Elsevier; 2016. p. 71-97.
35. Yunce M, Erdamar H, Bayram Nezihe A, Gok S. One more health benefit of blood donation: reduces acute-phase reactants, oxidants and increases antioxidant capacity. Journal of Basic and Clinical Physiology and Pharmacology2016. p. 653.
36. Bannister WH. From haemocuprein to copper-zinc superoxide dismutase: a history on the fiftieth anniversary of the discovery of haemocuprein and the twentieth anniversary of the discovery of superoxide dismutase. Free Radic Res Commun. 1988;5(1):35-42.
37. Zelko IN, Mariani TJ, Folz RJ. Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic Biol Med. 2002;33(3):337-49.
38. Lönnerdal B. Effects of milk and milk components on calcium, magnesium, and trace element absorption during infancy. Physiol Rev. 1997;77(3):643-69.
39. Domellöf M, Dewey KG, Cohen RJ, Lönnerdal B, Hernell O. Iron supplements reduce erythrocyte copper-zinc superoxide dismutase activity in term, breastfed infants. Acta Paediatr. 2005;94(11):1578-82.
40. Mehrabani M, Jalali M, Sadeghi MR, Hajibeygi B, Zeraati H, Fatehi F, et al. ASSOCIATION BETWEEN BLOOD DONATION FREQUENCY, ANTIOXIDANT ENZYMES AND LIPID PEROXIDATION. ACTA MEDICA IRANICA. 2008;46(5):361-6.
41. Rivlin RS. Regulation of flavoprotein enzymes in hypothyroidism and in riboflavin deficiency. Adv Enzyme Regul. 1970;8:239-50.
42. Kumerova A, Lece A, Skesters A, Silova A, Petuhovs V. Anaemia and antioxidant defence of the red blood cells. Mater Med Pol. 1998;30(1-2):12-5.
43. Cellerino R, Guidi G, Perona G. Plasma iron and erythrocytic glutathione peroxidase activity. A possible mechanism for oxidative haemolysis in iron deficiency anemia. Scand J Haematol. 1976;17(2):111-6.