[1] F. Urban, J. Kadlec, R. Vlach, and R. Kuchta, “Design of a pressure sensor based on optical fiber Bragg grating lateral deformation,” Sensors, vol. 10, no. 12, pp. 11212–11225, 2010, doi: 10.3390/s101211212.
[2] M. A. Riza, F. M. Foong, Y. I. Go, and C. K. Thein, “Development of sustainable FBG sensor for environmental monitoring through vibration energy harvesting,” 2019 IEEE Int. Conf. Sensors Nanotechnology, SENSORS NANO 2019, pp. 19–22, 2019, doi: 10.1109/SENSORSNANO44414.2019.8940082.
[3] I. W. Jung, B. Park, J. Provine, R. T. Howe, and O. Solgaard, “Highly sensitive monolithic silicon photonic crystal fiber tip sensor for simultaneous measurement of refractive index and temperature,” J. Light. Technol., vol. 29, no. 9, pp. 1367–1374, 2011, doi: 10.1109/JLT.2011.2126018.
[4] J. K. Sahota, N. Gupta, and D. Dhawan, “Fiber Bragg grating sensors for monitoring of physical parameters : a comprehensive review,” vol. 59, no. May, pp. 1–35, 2021, doi: 10.1117/1.OE.59.6.060901.
[5] Y. Cho, F. Ahmed, H. Joe, H. Yun, B. Min, and M. B. G. Jun, “Fabrication of a Screw-shaped Long Period Fiber Grating for Refractive Index Sensing,” vol. 1135, no. c, 2017, doi: 10.1109/LPT.2017.2765598.
[6] L. Dinia and F. Frezza, “Laser Beam Self-Focusing in Optical Fiber controlled through FBG integration,” 2020 IEEE Int. Work. Metrol. Ind. 4.0 IoT, MetroInd 4.0 IoT 2020 - Proc., pp. 264–267, 2020, doi: 10.1109/MetroInd4.0IoT48571.2020.9138276.
[7] M. Y. Fu, “Refractive index sensing based on the reflectivity of the backward cladding-core mode coupling in a concatenated fiber bragg grating and a long period grating,” IEEE Sens. J., vol. 12, no. 5, pp. 1415–1420, 2012, doi: 10.1109/JSEN.2011.2172601.
[8] C. Guan, X. Tian, S. Li, X. Zhong, J. Shi, and L. Yuan, “Long period fiber grating and high sensitivity refractive index sensor based on hollow eccentric optical fiber,” Sensors Actuators, B Chem., vol. 188, pp. 768–771, 2013, doi: 10.1016/j.snb.2013.07.086.
[9] R. Yang, Y.-S. Yu, Y. Xue, C. Chen, Q.-D. Chen, and H.-B. Sun, “Single S-tapered fiber Mach–Zehnder interferometers,” Opt. Lett., vol. 36, no. 23, p. 4482, 2011, doi: 10.1364/ol.36.004482.
[10] M. Divya shree, A. Sangeetha, and P. Krishnan, “Analysis and optimization of uniform FBG structure for sensing and communication applications,” Photonic Netw. Commun., vol. 39, no. 3, pp. 223–231, 2020, doi: 10.1007/s11107-020-00880-1.
[11] F. De-Jun, Z. Mao-Sen, G. Liu, L. Xi-Lu, and J. Dong-Fang, “D-shaped plastic optical fiber sensor for testing refractive index,” IEEE Sens. J., vol. 14, no. 5, pp. 1673–1676, 2014, doi: 10.1109/JSEN.2014.2301911.
[12] A. Othonos, K. Kalli, and G. E. Kohnke, “ Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing,” Phys. Today, vol. 53, no. 5, pp. 61–62, 2000, doi: 10.1063/1.883086.
[13] F. Ahmed, V. Ahsani, A. Saad, and M. B. G. Jun, “Bragg grating embedded in Mach-Zehnder interferometer for refractive index and temperature sensing,” IEEE Photonics Technol. Lett., vol. 28, no. 18, pp. 1968–1971, 2016, doi: 10.1109/LPT.2016.2580582.
[14] J. Zhao et al., “Refractive Index Fiber Laser Sensor by Using Tunable Filter Based on No-Core Fiber,” IEEE Photonics J., vol. 8, no. 5, 2016, doi: 10.1109/JPHOT.2016.2609598.
[15] M. Gu, S. Yuan, Q. Yuan, and Z. Tong, “Temperature-independent refractive index sensor based on fiber Bragg grating and spherical-shape structure,” Opt. Lasers Eng., vol. 115, no. November 2018, pp. 86–89, 2019, doi: 10.1016/j.optlaseng.2018.11.018.
[16] P. Xue, F. Yu, B. Wu, H. Bao, and J. Zheng, “Investigation of a D-shaped Plastic Optical Fiber Assisted by a Long Period Grating for Refractive Index Sensing,” IEEE Sens. J., vol. PP, no. c, p. 1, 2019, doi: 10.1109/JSEN.2019.2944932.
[17] A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, “Thinned fiber Bragg gratings as refractive index sensors,” IEEE Sens. J., vol. 5, no. 6, pp. 1288–1294, 2005, doi: 10.1109/JSEN.2005.859288.
[18] D. L. O. Presti et al., “Fiber Bragg Gratings for Medical Applications and Future Challenges : A Review,” IEEE Access, vol. 8, pp. 156863–156888, 2020.
[19] P. Tian et al., “Refractive Index Sensor Based on Fiber Bragg Grating in Hollow Suspended-Core Fiber,” IEEE Sens. J., vol. 19, no. 24, pp. 11961–11964, 2019, doi: 10.1109/JSEN.2019.2938786.
[20] C. Liao, K. Yang, J. Wang, Z. Bai, Z. Gan, and Y. Wang, “Helical Microfiber Bragg Grating Printed by Femtosecond Laser for Refractive Index Sensing,” IEEE Photonics Technol. Lett., vol. 31, no. 12, pp. 971–974, 2019, doi: 10.1109/LPT.2019.2912634.
[21] P. Chen, X. Shu, F. Shen, and H. Cao, “Sensitive refractive index sensor based on an assembly-free fiber multi-mode interferometer fabricated by femtosecond laser,” Opt. Express, vol. 25, no. 24, p. 29896, 2017, doi: 10.1364/oe.25.029896.
[22] P. Niu, J. Zhao, C. Zhang, H. Bai, X. Sun, and J. Bai, “Reflective intensity-demodulated refractometer based on S fiber taper,” IEEE Photonics Technol. Lett., vol. 30, no. 1, pp. 55–58, 2018, doi: 10.1109/LPT.2017.2773638.
[23] O. Frazao et al., “EDFA gain flattening using long-period fibre gratings based on the electric arc technique,” pp. 4–6, 2001, [Online]. Available: http://discovery.ucl.ac.uk/1314010/.
[24] S. Korganbayev et al., “Compact Fiber Optic Sensors for Dual Temperature and Refractive Index Profiling Based on Partially Etched Chirped Fiber Bragg [email protected],” Proc. IEEE Sensors, vol. 2018-Octob, 2018, doi: 10.1109/ICSENS.2018.8589819.
[25] Z. Zhang, T. Guo, and B. O. Guan, “Reflective fiber-optic refractometer using broadband cladding mode coupling mediated by a tilted fiber bragg grating and an in-fiber mirror,” J. Light. Technol., vol. 37, no. 11, pp. 2815–2819, 2019, doi: 10.1109/JLT.2018.2838538.
[26] Y. Singh, A. Sadhu, and S. K. Raghuwanshi, “Fabrication and Experimental Analysis of Reduced Graphene Oxide Coated Etched Fiber Bragg Grating Refractometric Sensor,” IEEE Sensors Lett., vol. 4, no. 7, pp. 20–23, 2020, doi: 10.1109/LSENS.2020.3002837.
[27] W. Zhang, D. Webb, and G. Peng, “Polymer optical fiber Bragg grating acting as an intrinsic biochemical concentration sensor,” Opt. Lett., vol. 37, no. 8, p. 1370, 2012, doi: 10.1364/ol.37.001370.
[28] S. R. Tahhan, R. Z. Chen, S. Huang, K. I. Hajim, and K. P. Chen, “Fabrication of Fiber Bragg Grating Coating with TiO2 Nanostructured Metal Oxide for Refractive Index Sensor,” J. Nanotechnol., vol. 2017, 2017, doi: 10.1155/2017/2791282.
[29] S. Korposh, S. W. Lee, S. W. James, and R. P. Tatam, “Refractive index sensitivity of fibre-optic long period gratings coated with SiO2 nanoparticle mesoporous thin films,” Meas. Sci. Technol., vol. 22, no. 7, 2011, doi: 10.1088/0957-0233/22/7/075208.
[30] Y. Zhao, Y. Liu, C. Zhou, Q. Guo, and T. Wang, “Sensing Characteristics of Long-Period Fiber Gratings Written in Thinned Cladding Fiber,” IEEE Sens. J., vol. 16, no. 5, pp. 1217–1223, 2016, doi: 10.1109/JSEN.2015.2501411.
[31] C. Li, W. Hu, L. Ding, and N. Yang, “Simultaneous measurement of refractive index and temperature based on reflective LPG-FBGs,” OECC/PSC 2019 - 24th Optoelectron. Commun. Conf. Conf. Photonics Switch. Comput. 2019, vol. 26, no. 21, pp. 2193–2196, 2019, doi: 10.23919/PS.2019.8817732.
[32] Y. Dong, S. Xiao, B. Wu, H. Xiao, and S. Jian, “Refractive index and temperature sensor based on D-shaped fiber combined with a fiber bragg grating,” IEEE Sens. J., vol. 19, no. 4, pp. 1362–1367, 2019, doi: 10.1109/JSEN.2018.2880305.
[33] K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Light. Technol., vol. 15, no. 8, pp. 1263–1276, 1997, doi: 10.1109/50.618320.
[34] H. Chen, C. Tien, W. F. Liu, S. Lin, and C. Engineering, “The Measurement of Liquid Refractive Index by D-shaped Fiber Bragg Grating,” pp. 119–120.
[35] R. B. Liang, Q. Z. Sun, J. H. Wo, and D. M. Liu, “Theoretical investigation on refractive index sensor based on Bragg grating in micro/nanofiber,” Wuli Xuebao/Acta Phys. Sin., vol. 60, no. 10, pp. 0–2, 2011, doi: 10.7498/aps.60.104221.