1. Kim, K., Kim, B. & Lee, C. H. Printing Flexible and Hybrid Electronics for Human Skin and Eye-Interfaced Health Monitoring Systems. Adv. Mater. 32, 1902051, (2020).
2. Lim, H. R. et al. Advanced Soft Materials, Sensor Integrations, and Applications of Wearable Flexible Hybrid Electronics in Healthcare, Energy, and Environment. Adv. Mater. 32, 1901924, (2020).
3. Sim, K., Rao, Z. Y., Ershad, F. & Yu, C. J. Rubbery Electronics Fully Made of Stretchable Elastomeric Electronic Materials. Adv. Mater. 32, 1902417, (2020).
4. Wang, C. F., Wang, C. H., Huang, Z. L. & Xu, S. Materials and Structures toward Soft Electronics. Adv. Mater. 30, 1801368, (2018).
5. Chortos, A., Liu, J. & Bao, Z. A. Pursuing prosthetic electronic skin. Nat. Mater. 15, 937-950, (2016).
6. Song, E. M. et al. Materials for flexible bioelectronic systems as chronic neural interfaces. Nat. Mater. 19, 590-603, (2020).
7. Lim, D. U. et al. All-Inkjet-Printed Vertical Heterostructure for Wafer-Scale Electronics. Acs Nano 13, 8213-8221, (2019).
8. Park, S. H. et al. 3D Printed Polymer Photodetectors. Adv. Mater. 30, 1803980, (2018).
9. Yuk, H. et al. 3D printing of conducting polymers. Nat. Commun. 11, (2020).
10. Lee, J. et al. Rapidly-Customizable, Scalable 3D-Printed Wireless Optogenetic Probes for Versatile Applications in Neuroscience. Adv. Funct. Mater. 30, 2004285, (2020).
11. Oh, J. Y. et al. Stretchable self-healable semiconducting polymer film for active-matrix strain-sensing array. Sci. Adv. 5, eaav3097, (2019).
12. Wang, Y. et al. A highly stretchable, transparent, and conductive polymer. Sci. Adv. 3, e1602076, (2017).
13. An, H. S. et al. Surface-agnostic highly stretchable and bendable conductive MXene multilayers. Sci. Adv. 4, 6547, (2018).
14. Lee, J. et al. Conductive Fiber-Based Ultrasensitive Textile Pressure Sensor for Wearable Electronics. Adv. Mater. 27, 2433-2439, (2015).
15. Lee, J. et al. Highly Sensitive Multifilament Fiber Strain Sensors with Ultrabroad Sensing Range for Textile Electronics. Acs Nano 12, 4259-4268, (2018).
16. Tang, S. Y., Tabor, C., Kalantar-Zadeh, K. & Dickey, M. D. Gallium Liquid Metal: The Devil's Elixir. Annu. Rev. Mater. Res. 51, 381-408, (2021).
17. Daeneke, T. et al. Liquid metals: fundamentals and applications in chemistry. Chem. Soc. Rev. 47, 4073-4111, (2018).
18. Neumann, T. V. & Dickey, M. D. Liquid Metal Direct Write and 3D Printing: A Review. Adv. Mater. Technol. 5, 2000070, (2020).
19. Joshipura, I. D., Ayers, H. R., Majidi, C. & Dickey, M. D. Methods to pattern liquid metals. J. Mater. Chem. C 3, 3834-3841, (2015).
20. Lin, Y. L., Genzer, J. & Dickey, M. D. Attributes, Fabrication, and Applications of Gallium-Based Liquid Metal Particles. Adv. Sci. 7, 2000192, (2020).
21. Kwon, K. Y. et al. Surface Modification of Gallium-Based Liquid Metals: Mechanisms and Applications in Biomedical Sensors and Soft Actuators. Adv. Intell. Syst. 3, 2000159, (2021).
22. Tang, L. X., Mou, L., Zhang, W. & Jiang, X. Y. Large-Scale Fabrication of Highly Elastic Conductors on a Broad Range of Surfaces. Acs Appl. Mater. Interfaces 11, 7138-7147, (2019).
23. Ford, M. J. et al. Controlled Assembly of Liquid Metal Inclusions as a General Approach for Multifunctional Composites. Adv. Mater. 32, 2002929, (2020).
24. Zhou, L. Y. et al. All-Printed Flexible and Stretchable Electronics with Pressing or Freezing Activatable Liquid-Metal-Silicone Inks. Adv. Funct. Mater. 30, 1906683, (2020).
25. Xu, J. Y. et al. Printable and Recyclable Conductive Ink Based on a Liquid Metal with Excellent Surface Wettability for Flexible Electronics. Acs Appl. Mater. Interfaces 13, 7443-7452, (2021).
26. Veerapandian, S. et al. Hydrogen-doped viscoplastic liquid metal microparticles for stretchable printed metal lines. Nat. Mater. 20, 533-540, (2021).
27. Kong, W. et al. Oxide-mediated mechanisms of gallium foam generation and stabilization during shear mixing in air. Soft Matter 16, 5801-5805, (2020).
28. Yan, J. J. et al. Solution processable liquid metal nanodroplets by surface-initiated atom transfer radical polymerization. Nat. Nanotechnol. 14, 684-690, (2019).
29. Gu, X. D. et al. The meniscus-guided deposition of semiconducting polymers. Nat. Commun. 9, 534, (2018).
30. Park, S. et al. Large-Area Assembly of Densely Aligned Single-Walled Carbon Nanotubes Using Solution Shearing and Their Application to Field-Effect Transistors. Adv. Mater. 27, 2656-2662, (2015).
31. Cossio, G. & Yu, E. T. Zeta Potential Dependent Self-Assembly for Very Large Area Nanosphere Lithography. Nano. Lett. 20, 5090-5096, (2020).
32. Le Berre, M., Chen, Y. & Baigl, D. From Convective Assembly to Landau-Levich Deposition of Multilayered Phospholipid Films of Controlled Thickness. Langmuir 25, 2554-2557, (2009).
33. NorketiNorketi, J. E., Dickey, M. D. & Miller, V. M. A Review of Liquid Metal Embrittlement: Cracking Open the Disparate Mechanisms. Metall. Mater. Trans. A 52, 2158-2172, (2021).
34. Corredor, L., Maini, B. & Husein, M. Improving Polymer Flooding by Addition of Surface Modified Nanoparticles. SPE Asia Pacific Oil and Gas Conference and Exhibition. Brisbane, Australia (2018).
35. Vajihinejad, V. et al. Water Soluble Polymer Flocculants: Synthesis, Characterization, and Performance Assessment. Macromol. Mater. Eng. 304, 1800526, (2019).
36. Zhang, M. K., Yao, S. Y., Rao, W. & Liu, J. Transformable soft liquid metal micro/nanomaterials. Mater. Sci. Eng. R Rep. 138, 1-35, (2019).
37. Liu, S. Z., Shah, D. S. & Kramer-Bottiglio, R. Highly stretchable multilayer electronic circuits using biphasic gallium-indium. Nat. Mater. 20, 851-858, (2021).
38. Pacchioni, G. 3D PRINTING May the strength be with you. Nat. Rev. Mater. 2, 17081, (2017).
39. Cholewicki, J., Mcgill, S. M. & Norman, R. W. Comparison of Muscle Forces and Joint Load from an Optimization and Emg Assisted Lumbar Spine Model - Towards Development of a Hybrid Approach. J. Biomech. 28, 321-331, (1995).
40. Yang, J. C. et al. Electronic Skin: Recent Progress and Future Prospects for Skin-Attachable Devices for Health Monitoring, Robotics, and Prosthetics. Adv. Mater. 31, 1904765, (2019).
41. Kiddee, P., Naidu, R. & Wong, M. H. Electronic waste management approaches: An overview. Waste Manage 33, 1237-1250, (2013).
42. Gollakota, A. R. K., Gautam, S. & Shu, C. M. Inconsistencies of e-waste management in developing nations - Facts and plausible solutions. J. Environ. Manage. 261, 110234, (2020).
43. Baumgartner, M. et al. Resilient yet entirely degradable gelatin-based biogels for soft robots and electronics. Nat. Mater. 19, 1102-1109, (2020).
44. Shim, J. S., Rogers, J. A. & Kang, S. K. Physically transient electronic materials and devices. Mater. Sci. Eng. R Rep. 145, 100624, (2021).
45. Hwang, S. W. et al. A Physically Transient Form of Silicon Electronics. Science 337, 1640-1644, (2012).
46. Jeong, J. W. et al. Materials and Optimized Designs for Human-Machine Interfaces Via Epidermal Electronics. Adv. Mater. 25, 6839-6846, (2013).
47. Jeong, J. W. et al. Capacitive Epidermal Electronics for Electrically Safe, Long-Term Electrophysiological Measurements. Adv. Healthc. Mater. 3, 642-648, (2014).
48. Jang, K. I. et al. Ferromagnetic, Folded Electrode Composite as a Soft Interface to the Skin for Long-Term Electrophysiological Recording. Adv. Funct. Mater. 26, 7281-7290, (2016).
49. Rodeheaver, N. et al. Strain-Isolating Materials and Interfacial Physics for Soft Wearable Bioelectronics and Wireless, Motion Artifact-Controlled Health Monitoring. Adv. Funct. Mater. 31, 2104070, (2021).
50. Lind, J. U. et al. Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing. Nat. Mater. 16, 303-308, (2017).
51. Zhu, Z. J., Park, H. S. & McAlpine, M. C. 3D printed deformable sensors. Sci. Adv. 6, eaba5575, (2020).
52. Boley, J. W., White, E. L., Chiu, G. T. C. & Kramer, R. K. Direct Writing of Gallium-Indium Alloy for Stretchable Electronics. Adv. Funct. Mater. 24, 3501-3507, (2014).
53. Ladd, C., So, J. H., Muth, J. & Dickey, M. D. 3D Printing of Free Standing Liquid Metal Microstructures. Adv. Mater. 25, 5081-5085, (2013).
54. Park, Y. G., An, H. S., Kim, J. Y. & Park, J. U. High-resolution, reconfigurable printing of liquid metals with three-dimensional structures. Sci. Adv. 5, eaaw2844, (2019).
55. Park, J. E. et al. Rewritable, Printable Conducting Liquid Metal Hydrogel. Acs Nano 13, 9122-9130, (2019).
56. Oh, J. et al. Highly Uniform and Low Hysteresis Piezoresistive Pressure Sensors Based on Chemical Grafting of Polypyrrole on Elastomer Template with Uniform Pore Size. Small 15, 1901744, (2019).
57. Lee, G.-H.. et al. Parallel signal processing of a wireless pressure‐sensing platform combined with machine‐learning‐based cognition, inspired by the human somatosensory system. Adv. Mater. 32, 1906269, (2020).