Ali I, Teng ZH, Bai YT, et al. A high density SLAF-SNP genetic map and QTL detection for fibre quality traits in Gossypium hirsutum. BMC Genomics. 2018;19(1):879.
Chen Y, Liu GD, Ma HH, et al. Identification of Introgressed Alleles Conferring High Fiber Quality Derived From Gossypium barbadense L. in Secondary Mapping Populations of G. hirsutum L. Front Plant Sci. 2018;9:1023.
Diouf L, Magwanga RO, Gong WF, et al. QTL Mapping of Fiber Quality and Yield-Related Traits in an Intra-Specific Upland Cotton Using Genotype by Sequencing (GBS). Int J Mol Sci. 2018;19(2):441.
Du XM, Liu SY, Sun JL, et al. Dissection of complicate genetic architecture and breeding perspective of cottonseed traits by genome-wide association study. BMC Genomics. 2018;19(1):451.
Fan LP, Wang LP, Wang XY, et al. A high-density genetic map of extra-long staple cotton (Gossypium barbadense) constructed using genotyping-by-sequencing based single nucleotide polymorphic markers and identification of fiber traits-related QTL in a recombinant inbred line population. BMC Genomics. 2018;19(1):489.
Han LB, Li YB, Wang HY, et al. The dual functions of WLIM1a in cell elongation and secondary wall formation in developing cotton fibers. The Plant Cell. 2013;25(11):4421-4438.
He JX. Micronaire value is an important parameter for cotton quality. Chinese Cotton Processing. 2005;(3):25-26.
He XC, Qin YM, Xu Y, et al. Molecular cloning, expression profiling, and yeast complementation of 19 beta-tubulin cDNAs from developing cotton ovules. J Exp Bot. 2008;59(10):2687-2695.
Hu Y, Chen JD, Fang L, et al. Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nat Genet. 2019;51(4):739-748.
Huang C, Nie XH, Shen C, et al. Population structure and genetic basis of the agronomic traits of upland cotton in China revealed by a genome-wide association study using high-density SNPs. Plant Biotechnol J. 2017;15(11):1374-1386.
Huang GQ, Xu WL, Gong SY, et al. Characterization of 19 novel cotton FLA genes and their expression profiling in fiber development and in response to phytohormones and salt stress. Physiol Plant. 2008;134(2):348-359.
Hulse-Kemp AM, Lemm J, Plieske J, et al. Development of a 63K SNP Array for Cotton and High-Density Mapping of Intraspecific and Interspecific Populations of Gossypium spp. G3 (Bethesda). 2015;5(6):1187–209.
Jamshed M, Jia F, Gong JW, et al. Identification of stable quantitative trait loci (QTLs) for fiber quality traits across multiple environments in Gossypium hirsutum recombinant inbred line population. BMC Genomics. 2016;17:197.
Jia XY, Wang HT, Pang CY, et al. QTL delineation for five fiber quality traits based on an intra-specific Gossypium hirsutum L. recombinant inbred line population. Mol Genet Genomics. 2018;293(4):831-843.
Li H, Peng ZY, Yang XH, et al. Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nat Genet. 2013;45(1):43-50.
Liu S, Fan CC, Li JN, et al. A genome-wide association study reveals novel elite allelic variations in seed oil content of Brassica napus. Theor Appl Genet. 2016;129(6):1203-1215.
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25:402-408.
Ma JJ, Geng YH, Pei WF, et al. Genetic variation of dynamic fiber elongation and developmental quantitative trait locus mapping of fiber length in upland cotton (Gossypium hirsutum L.). BMC Genomics. 2018;19(1):882.
Ma JJ, Liu J, Pei WF, et al. Genome-wide association study of the oil content in upland cotton (Gossypium hirsutum L.) and identification of GhPRXR1, a candidate gene for a stable QTLqOC-Dt5-1. Plant Sci. 2019;286:89-97.
Ma LL, Su Y, Nie HS, et al. QTL and genetic analysis controlling fiber quality traits using paternal backcross population in upland cotton. J Cotton Res. 2020;3:22.
Ma ZY, He SP, Wang XF, et al. Resequencing a core collection of upland cotton identifies genomic variation and loci influencing fiber quality and yield. Nat Genet. 2018;50(6):803-813.
Michailidis G, Argiriou A, Darzentas N, et al. Analysis of xyloglucan endotransglycosylase/hydrolase (XTH) genes from allotetraploid (Gossypium hirsutum) cotton and its diploid progenitors expressed during fiber elongation. J Plant Physiol. 2009;166(4):403-416.
Pang CY, Wang H, Pang Y, et al. Comparative proteomics indicates that biosynthesis of pectic precursors is important for cotton fiber and Arabidopsis root hair elongation. Mol Cell Proteomics. 2010;9(9):2019-2033.
Said JI, Lin ZX, Zhang XL, et al. A comprehensive meta QTL analysis for fiber quality, yield, yield related and morphological traits, drought tolerance, and disease resistance in tetraploid cotton. BMC Genomics. 2013;14:776.
Said JI, Knapka JA, Song MZ, et al. Cotton QTLdb: a cotton QTL database for QTL analysis, visualization, and comparison between Gossypium hirsutum and G. hirsutum × G. barbadense populations. Mol Genet Genomics. 2015;290(4):1615-25.
Said JI, Song MZ, Wang HT, et al. A comparative meta-analysis of QTL between intraspecific Gossypium hirsutum and interspecific G. hirsutum × G. barbadense populations. Mol Genet Genomics. 2015;290(3):1003-25.
Showalter AM. Arabinogalactan-proteins: structure, expression and function. Cell Mol Life Sci. 2001;58(10):1399-1417.
Su JJ, Fan SL, Li LB, et al. Detection of favorable QTL alleles and candidate genes for lint percentage by GWAS in Chinese Upland cotton. Front Plant Sci. 2016;7:1576.
Sun FD, Li JW, Liu AY, et al. Analysis of genetic variation for fiber quality and yield traits in an recombinant inbred population of Gossypium hirsutum L. Cotton Science. 2010;22(04):319-325.
Tu LL, Zhang XL, Liu DQ, et al. Suitable internal control genes for qRT-PCR normalization in cotton fiber development and somatic embryogenesis. Chinese Science Bulletin. 2007;52(22):3110-3117.
Turner SD. qqman: an R package for visualizing GWAS results using Q-Q and manhattan plots. Biorxiv. 2014:005165.
Wang BH, Zhuang ZM, Zhang ZS, et al. Advanced Backcross QTL Analysis of Fiber Strength and Fineness in a Cross between Gossypium hirsutum and G. mustelinum. Front Plant Sci. 2017a;8:1848.
Wang MJ, Tu LL, Lin M, et al. Asymmetric subgenome selection and cis-regulatory divergence during cotton domestication. Nat Genet. 2017b;49(4):579-587.
Wang HY, Wang J, Gao P, et al. Down-regulation of GhADF1 gene expression affects cotton fibre properties. Plant Biotechnol J. 2009;7(1):13-23.
Wu M, Li LY, Pei WF, et al. Identification of differentially expressed genes in developing cotton fibers between two groups of backcross inbred lines differing in fiber micronaire. Cotton Science. 2020;32(1):52-62.
Yan HC. Analysis of the digital gene expression profiling of cotton fiber development during cell elongation and secondary cell wall biogenesics. MD Dissertation of Graduate School of Huangzhong Agricultural University, 2010. pp 13-14.
Yang N, Lu YL, Yang XH, et al. Genome wide association studies using a new nonparametric model reveal the genetic architecture of 17 agronomic traits in an enlarged maize association panel. PLoS Genetics. 2014;10(9):e1004573.
Yu SX. The development of cotton production in the recent hundred years of China. Journal of Agriculture. 2018;8(1):85-91.
Zhang JF, Stewart JW. Economical and rapid method for extracting cotton genomic DNA. J Cotton Sci. 2000;4(3):193-201.
Zhang SW, Zhu XF, Feng LC, et al. Mapping of fiber quality QTLs reveals useful variation and footprints of cotton domestication using introgression lines. Sci Rep. 2016;6:31954.
Zhang TZ, Hu Y, Jiang WK, et al. Sequencing of allotetraploid cotton (Gossypium hirsutumL. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol. 2015;33(5):531–537.
Zhang Z, Li JW, Muhammad J, et al. High resolution consensus mapping of quantitative trait loci for fiber strength, length and micronaire on chromosome 25 of the upland cotton (Gossypium hirsutum L.). PLoS One. 2015;10(8):e0135430.