1 Phillips, N. The coronavirus is here to stay - here's what that means. Nature 590, 382-384, doi:10.1038/d41586-021-00396-2 (2021).
2 Wu, F. et al. A new coronavirus associated with human respiratory disease in China. Nature 579, 265-269, doi:10.1038/s41586-020-2008-3 (2020).
3 Wang, Q. et al. Structural Basis for RNA Replication by the SARS-CoV-2 Polymerase. Cell 182, 417-428 e413, doi:10.1016/j.cell.2020.05.034 (2020).
4 Huang, J., Song, W., Huang, H. & Sun, Q. Pharmacological Therapeutics Targeting RNA-Dependent RNA Polymerase, Proteinase and Spike Protein: From Mechanistic Studies to Clinical Trials for COVID-19. J Clin Med 9, doi:10.3390/jcm9041131 (2020).
5 Casalino, L. et al. AI-driven multiscale simulations illuminate mechanisms of SARS-CoV-2 spike dynamics. The International Journal of High Performance Computing Applications 35, 432-451, doi:10.1177/10943420211006452 (2021).
6 Shang, J. et al. Structural basis of receptor recognition by SARS-CoV-2. Nature 581, 221-224, doi:10.1038/s41586-020-2179-y (2020).
7 Genna, V., Donati, E. & De Vivo, M. The Catalytic Mechanism of DNA and RNA Polymerases. ACS Catalysis 8, 11103-11118, doi:10.1021/acscatal.8b03363 (2018).
8 Geronimo, I., Vidossich, P., Donati, E. & Vivo, M. Computational investigations of polymerase enzymes: Structure, function, inhibition, and biotechnology. WIREs Computational Molecular Science, doi:10.1002/wcms.1534 (2021).
9 Zhu, W. et al. RNA-Dependent RNA Polymerase as a Target for COVID-19 Drug Discovery. SLAS Discov 25, 1141-1151, doi:10.1177/2472555220942123 (2020).
10 Picarazzi, F., Vicenti, I., Saladini, F., Zazzi, M. & Mori, M. Targeting the RdRp of Emerging RNA Viruses: The Structure-Based Drug Design Challenge. Molecules 25, doi:10.3390/molecules25235695 (2020).
11 Tian, L. et al. RNA-dependent RNA polymerase (RdRp) inhibitors: The current landscape and repurposing for the COVID-19 pandemic. Eur J Med Chem 213, 113201, doi:10.1016/j.ejmech.2021.113201 (2021).
12 Chien, M. et al. Nucleotide Analogues as Inhibitors of SARS-CoV-2 Polymerase, a Key Drug Target for COVID-19. J Proteome Res 19, 4690-4697, doi:10.1021/acs.jproteome.0c00392 (2020).
13 Jockusch, S. et al. A library of nucleotide analogues terminate RNA synthesis catalyzed by polymerases of coronaviruses that cause SARS and COVID-19. Antiviral Res 180, 104857, doi:10.1016/j.antiviral.2020.104857 (2020).
14 Khan, S. et al. A review on the interaction of nucleoside analogues with SARS-CoV-2 RNA dependent RNA polymerase. Int J Biol Macromol 181, 605-611, doi:10.1016/j.ijbiomac.2021.03.112 (2021).
15 Li, G. & De Clercq, E. Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat Rev Drug Discov 19, 149-150, doi:10.1038/d41573-020-00016-0 (2020).
16 Wang, M. et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 30, 269-271, doi:10.1038/s41422-020-0282-0 (2020).
17 Wang, Y. et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. The Lancet 395, 1569-1578, doi:10.1016/s0140-6736(20)31022-9 (2020).
18 Malone, B. & Campbell, E. A. Molnupiravir: coding for catastrophe. Nat Struct Mol Biol 28, 706-708, doi:10.1038/s41594-021-00657-8 (2021).
19 Carta, A. et al. Quinoline tricyclic derivatives. Design, synthesis and evaluation of the antiviral activity of three new classes of RNA-dependent RNA polymerase inhibitors. Bioorg Med Chem 19, 7070-7084, doi:10.1016/j.bmc.2011.10.009 (2011).
20 Zhao, J. et al. Quinoline and Quinazoline Derivatives Inhibit Viral RNA Synthesis by SARS-CoV-2 RdRp. ACS Infect Dis 7, 1535-1544, doi:10.1021/acsinfecdis.1c00083 (2021).
21 Newman, D. J. & Cragg, G. M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J Nat Prod 83, 770-803, doi:10.1021/acs.jnatprod.9b01285 (2020).
22 Steinmann, J., Buer, J., Pietschmann, T. & Steinmann, E. Anti-infective properties of epigallocatechin-3-gallate (EGCG), a component of green tea. Br J Pharmacol 168, 1059-1073, doi:10.1111/bph.12009 (2013).
23 Saeedi-Boroujeni, A. & Mahmoudian-Sani, M. R. Anti-inflammatory potential of Quercetin in COVID-19 treatment. J Inflamm (Lond) 18, 3, doi:10.1186/s12950-021-00268-6 (2021).
24 Liskova, A. et al. Flavonoids against the SARS-CoV-2 induced inflammatory storm. Biomed Pharmacother 138, 111430, doi:10.1016/j.biopha.2021.111430 (2021).
25 Derosa, G., Maffioli, P., D'Angelo, A. & Di Pierro, F. A role for quercetin in coronavirus disease 2019 (COVID-19). Phytother Res 35, 1230-1236, doi:10.1002/ptr.6887 (2021).
26 Goris, T. et al. Repositioning microbial biotechnology against COVID-19: the case of microbial production of flavonoids. Microb Biotechnol 14, 94-110, doi:10.1111/1751-7915.13675 (2021).
27 Russo, M., Moccia, S., Spagnuolo, C., Tedesco, I. & Russo, G. L. Roles of flavonoids against coronavirus infection. Chem Biol Interact 328, 109211, doi:10.1016/j.cbi.2020.109211 (2020).
28 Abian, O. et al. Structural stability of SARS-CoV-2 3CLpro and identification of quercetin as an inhibitor by experimental screening. Int J Biol Macromol 164, 1693-1703, doi:10.1016/j.ijbiomac.2020.07.235 (2020).
29 Choudhry, N. et al. Chinese Therapeutic Strategy for Fighting COVID-19 and Potential Small-Molecule Inhibitors against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). J Med Chem 63, 13205-13227, doi:10.1021/acs.jmedchem.0c00626 (2020).
30 Lee, C. et al. Investigation of the pharmacophore space of Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) NTPase/helicase by dihydroxychromone derivatives. Bioorg Med Chem Lett 19, 4538-4541, doi:10.1016/j.bmcl.2009.07.009 (2009).
31 Nguyen, T. T. et al. Flavonoid-mediated inhibition of SARS coronavirus 3C-like protease expressed in Pichia pastoris. Biotechnol Lett 34, 831-838, doi:10.1007/s10529-011-0845-8 (2012).
32 Shaldam, M. A., Yahya, G., Mohamed, N. H., Abdel-Daim, M. M. & Al Naggar, Y. In silico screening of potent bioactive compounds from honeybee products against COVID-19 target enzymes. Environ Sci Pollut Res Int 28, 40507-40514, doi:10.1007/s11356-021-14195-9 (2021).
33 Yin, W. et al. Structural basis for inhibition of the SARS-CoV-2 RNA polymerase by suramin. Nat Struct Mol Biol 28, 319-325, doi:10.1038/s41594-021-00570-0 (2021).
34 Schrödinger Release 2021-3: LigPrep, Schrödinger, LLC, New York, NY, 2021.
35 Halgren, T. A. et al. Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 47, 1750-1759, doi:10.1021/jm030644s (2004).
36 Ortega, J. A. et al. Novel, Potent, and Druglike Tetrahydroquinazoline Inhibitor That Is Highly Selective for Human Topoisomerase II alpha over beta. J Med Chem 63, 12873-12886, doi:10.1021/acs.jmedchem.0c00774 (2020).
37 Arencibia, J. M. et al. Design, Synthesis, Dynamic Docking, Biochemical Characterization, and in Vivo Pharmacokinetics Studies of Novel Topoisomerase II Poisons with Promising Antiproliferative Activity. J Med Chem 63, 3508-3521, doi:10.1021/acs.jmedchem.9b01760 (2020).
38 De Vivo, M., Masetti, M., Bottegoni, G. & Cavalli, A. Role of Molecular Dynamics and Related Methods in Drug Discovery. J Med Chem 59, 4035-4061, doi:10.1021/acs.jmedchem.5b01684 (2016).
39 Palermo, G. et al. An optimized polyamine moiety boosts the potency of human type II topoisomerase poisons as quantified by comparative analysis centered on the clinical candidate F14512. Chem Commun (Camb) 51, 14310-14313, doi:10.1039/c5cc05065k (2015).
40 Palermo, G., Favia, A. D., Convertino, M. & De Vivo, M. The Molecular Basis for Dual Fatty Acid Amide Hydrolase (FAAH)/Cyclooxygenase (COX) Inhibition. ChemMedChem 11, 1252-1258, doi:10.1002/cmdc.201500507 (2016).
41 Yan, L. et al. Cryo-EM Structure of an Extended SARS-CoV-2 Replication and Transcription Complex Reveals an Intermediate State in Cap Synthesis. Cell 184, 184-193 e110, doi:10.1016/j.cell.2020.11.016 (2021).
42 Yan, L. et al. Architecture of a SARS-CoV-2 mini replication and transcription complex. Nat Commun 11, 5874, doi:10.1038/s41467-020-19770-1 (2020).
43 Hillen, H. S. et al. Structure of replicating SARS-CoV-2 polymerase. Nature 584, 154-156, doi:10.1038/s41586-020-2368-8 (2020).
44 Naydenova, K. et al. Structure of the SARS-CoV-2 RNA-dependent RNA polymerase in the presence of favipiravir-RTP. Proc Natl Acad Sci U S A 118, doi:10.1073/pnas.2021946118 (2021).
45 Yin, W. et al. Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir. Science 368, 1499-1504, doi:10.1126/science.abc1560 (2020).
46 Chen, J. et al. Structural Basis for Helicase-Polymerase Coupling in the SARS-CoV-2 Replication-Transcription Complex. Cell 182, 1560-1573 e1513, doi:10.1016/j.cell.2020.07.033 (2020).
47 Kokic, G. et al. Mechanism of SARS-CoV-2 polymerase stalling by remdesivir. Nat Commun 12, 279, doi:10.1038/s41467-020-20542-0 (2021).
48 Mishra, A. & Rathore, A. S. RNA dependent RNA polymerase (RdRp) as a drug target for SARS-CoV2. J Biomol Struct Dyn, 1-13, doi:10.1080/07391102.2021.1875886 (2021).
49 Deshmukh, M. G. et al. Structure-guided design of a perampanel-derived pharmacophore targeting the SARS-CoV-2 main protease. Structure 29, 823-833 e825, doi:10.1016/j.str.2021.06.002 (2021).
50 De Vivo, M. & Cavalli, A. Recent advances in dynamic docking for drug discovery. WIREs Computational Molecular Science 7, doi:10.1002/wcms.1320 (2017).
51 Ghahremanpour, M. M. et al. Identification of 14 Known Drugs as Inhibitors of the Main Protease of SARS-CoV-2. ACS Med Chem Lett 11, 2526-2533, doi:10.1021/acsmedchemlett.0c00521 (2020).
52 Zhang, C. H. et al. Potent Noncovalent Inhibitors of the Main Protease of SARS-CoV-2 from Molecular Sculpting of the Drug Perampanel Guided by Free Energy Perturbation Calculations. ACS Cent Sci 7, 467-475, doi:10.1021/acscentsci.1c00039 (2021).
53 Friesner, R. A. et al. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47, 1739-1749, doi:10.1021/jm0306430 (2004).
54 Maier, J. A. et al. ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. J Chem Theory Comput 11, 3696-3713, doi:10.1021/acs.jctc.5b00255 (2015).
55 Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A. & Case, D. A. Development and testing of a general amber force field. J Comput Chem 25, 1157-1174, doi:10.1002/jcc.20035 (2004).
56 Bayly, C. I., Cieplak, P., Cornell, W. & Kollman, P. A. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. The Journal of Physical Chemistry 97, 10269-10280, doi:10.1021/j100142a004 (2002).
57 Joung, I. S. & Cheatham, T. E., 3rd. Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J Phys Chem B 112, 9020-9041, doi:10.1021/jp8001614 (2008).
58 Hess, B. P-LINCS: A Parallel Linear Constraint Solver for Molecular Simulation. J Chem Theory Comput 4, 116-122, doi:10.1021/ct700200b (2008).
59 Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. J Chem Phys 126, 014101, doi:10.1063/1.2408420 (2007).
60 Parrinello, M. & Rahman, A. Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics 52, 7182-7190, doi:10.1063/1.328693 (1981).