Woody Plant Species Diversity and Carbon Stocks Potential of Homegarden Agroforestry in Ephratana Gidimdistrict, Central Ethiopia.

DOI: https://doi.org/10.21203/rs.3.rs-1169232/v1

Abstract

Background

Tropical agroforestry systems can contribute incredible benefit for carbon sequestration and plant diversity. This system is one of the common practices in the Central part of Ethiopia. This is because of source of the multifunctional ecosystem services, such as food, feed, biodiversity conservation and carbon storage potential.

Methodology

This study was carried out to assess the influence of land size on floristic diversity, richness and biomass carbon stock. The homegardens were classified into small (<0.06 ha), medium (0.06–0.1 ha) and large (>0.1 ha). Biomass of the homegarden was computed using allometric equations.

Results

A total of 39 woody species, belonging to 24 families were recorded in all the study homegardens. Tree density 625.8 tree ha-1 and basal area 17.3 m2ha-1 were highest for small-size HGs. However, large homegarden had more species richness (Margalef Index) per garden (12.4) compared to medium and small size homegarden. Mean biomass carbon ranged from 9 to 89.3 ton ha-1. Mean biomass carbon stock per unit area was higher in small homegarden (49.3 ton ha-1) compared to medium (38.4 ton ha-1) and large (35 ton ha-1).

Conclusions

This result implies that homegarden can serve as both for carbon sequestration and conservation of woody species diversity. However, a specific homegarden management plan is necessary to improve the carbon storage and species diversification to the respective area. The results provide a catalyst the implication of the future potential of homegarden management in carbon storage thereby for climate change adaptation and mitigation purpose. 

Full Text

This preprint is available for download as a PDF.