1. F. Bray, A. Jemal, N. Grey, J. Ferlay and D. Forman, "Global cancer transitions according to the Human Development Index (2008-2030): a population-based study," Lancet Oncol vol. 13, no. 8, pp. 790-801, 2012.
2. R. J. Kathawala, P. Gupta, C. R. Ashby and Z.-S. Chen, "The modulation of ABC transporter-mediated multidrug resistance in cancer: A review of the past decade," Drug Resistance Updates, vol. 18, pp. 1-17, 2015.
3. M. Bar-Zeev, Y. D. Livney and Y. G. Assaraf, "Targeted nanomedicine for cancer therapeutics: Towards precision medicine overcoming drug resistance," Drug Resistance Updates, pp. 15-30, 2017.
4. M. M. Gottesman, "Mechanisms of Cancer Drug Resistance," Annual Review of Medicine, vol. 53, no. 1, pp. 615-627, 2002.
5. D. C. Ihde, "Chemotherapy of lung cancer," N Engl J Med, vol. 327, no. 20, pp. 1434-1441, 1992.
6. Y. Hailing, L. Xiufang, W. Lili, L. Baoqiang, H. Kaichen, H. Yongquan, Z. Qianqian, M. Chaoming, R. Xiaoshuai, Z. Rui, L. Hui, P. Pengfei and S. Hong, "Doxorubicin-loaded fluorescent carbon dots with PEI passivation as a drug delivery system for cancer therapy," Nanoscale, vol. 12, no. 33, pp. 17222-17237, 2020.
7. J. F. Lu, D. Pokharel and M. Bebawy, "MRP1 and its role in anticancer drug resistance," Drug Metab Rev, vol. 47, no. 4, pp. 406-419, 2015.
8. R. W. Robey, K. M. Pluchino, M. D. Hall, A. T. Fojo, S. E. Bates and M. M. Gottesman, "Revisiting the role of ABC transporters in multidrug-resistant cancer," Nature Reviews Cancer, vol. 18, no. 7, pp. 452-464, 2018.
9. T. Du, J. G. Liang, N. Dong, L. Liu, L. R. Fang, S. B. Xiao and H. Y. Han, "Carbon dots as inhibitors of virus by activation of type I interferon response," Carbon, vol. 110, pp. 278-285, 2016.
10. O. Taratula, "Innovative Strategy for Treatment of Lung Cancer: Inhalatory Codelivery of Anticancer Drugs and siRNA for Suppression of Cellular Resistance," Journal of Drug Targeting, vol. 19, no. 10, pp. 900-914, 2011.
11. C. Yang, K. K. Chan, W.-J. Lin, A. M. Soehartono, G. Lin, H. Toh, H. S. Yoon, C.-K. Chen and K.-T. Yong, "Biodegradable nanocarriers for small interfering ribonucleic acid (siRNA) co-delivery strategy increase the chemosensitivity of pancreatic cancer cells to gemcitabine," Nano Research, vol. 10, no. 9, pp. 3049-3067, 2017.
12. C. Yang, R. Hu, T. Anderson, Y. Wang, G. Lin, W.-C. Law, W.-J. Lin, Q. T. Nguyen, H. T. Toh, H. S. Yoon, C.-K. Chen and K.-T. Yong, "Biodegradable nanoparticle-mediated K-ras down regulation for pancreatic cancer gene therapy," Journal of Materials Chemistry B, vol. 3, no. 10, pp. 2163-2172, 2015.
13. K. H. Moss, P. Popova, S. R. Hadrup, K. Astakhova and M. Taskova, "Lipid Nanoparticles for Delivery of Therapeutic RNA Oligonucleotides," Molecular Pharmaceutics, vol. 16, no. 6, pp. 2265-2277, 2019.
14. S. Chen, J. Deng and L.-M. Zhang, "Cationic nanoparticles self-assembled from amphiphilic chitosan derivatives containing poly(amidoamine) dendrons and deoxycholic acid as a vector for co-delivery of doxorubicin and gene," Carbohydrate Polymers, vol. 258, pp. 117706, 2021.
15. M. Creixell and N. A. Peppas, "Co-delivery of siRNA and therapeutic agents using nanocarriers to overcome cancer resistance," Nano Today, vol. 7, no. 4, pp. 367-379, 2012.
16. N. Licciardello, S. Hunoldt, R. Bermann, G. Singh, C. Mamat, A. Faramus, J. L. Z. Ddungu, S. Silvestrini, M. Maggini and L. De Cola, "Biodistribution studies of ultrasmall silicon nanoparticles and carbon dots in experimental rats and tumor mice," Nanoscale, pp. 10.1039.C1038NR01063C, 2018.
17. S. Hettiarac, R. Graham, K. J. Mintz, Y. Zhou, S. Vanni, Z. Peng and R. Leblanc, "Triple conjugated carbon dots as a nano-drug delivery model for glioblastoma brain tumors," Nanoscale, 2019.
18. N. Gao, W. Yang, H. Nie, Y. Gong, J. Jing, L. Gao and X. Zhang, "Turn-on theranostic fluorescent nanoprobe by electrostatic self-assembly of carbon dots with doxorubicin for targeted cancer cell imaging, in vivo hyaluronidase analysis, and targeted drug delivery," Biosens Bioelectron, vol. 96, pp. 300-307, 2017.
19. K. J. Chen, Y. L. Chiu, Y. M. Chen, Y. C. Ho and H. W. Sung, "Intracellularly monitoring/imaging the release of doxorubicin from pH-responsive nanoparticles using Förster resonance energy transfer," Biomaterials, vol. 32, no. 10, pp. 2586-2592, 2011.
20. S. D. Hettiarachchi, E. C. Kirbas, H. Makhlouf, E. S. Seven and R. M. Leblanc, "pH and redox triggered doxorubicin release from covalently linked carbon dots conjugates," Nanoscale, vol. 13, no. 10, 2021.
21. H. Luo, K. Tang, K. Huang, X. Lin and H. Yu, "Doxorubicin and siRNA Co-Delivery System Based on Carbon Dots Inhibits Chemoresistance of Lung Cancer," 2021.
22. J. Zhu, H. Chu, J. Shen, C. Wang and Y. Wei, "Green preparation of carbon dots from plum as a ratiometric fluorescent probe for detection of doxorubicin," Optical Materials, vol. 114, pp. 110941, 2021.
23. H. Yu, X. Lv, L. Wu, B. Li and H. Shan, "Doxorubicin-loaded fluorescent carbon dots with PEI passivation as a drug delivery system for cancer therapy," Nanoscale, vol. 12, no. 33, pp. 17135-17558, 2020.
24. S. Karimi and H. Namazi, "Simple preparation of maltose-functionalized dendrimer/graphene quantum dots as a pH-sensitive biocompatible carrier for targeted delivery of doxorubicin," International Journal of Biological Macromolecules, vol. 156, no. 9, 2020.
25. P. Wolski, "Molecular Dynamics Simulations of the pH-Dependent Adsorption of Doxorubicin on Carbon Quantum Dots," Molecular Pharmaceutics, vol. 18, no. 1, 2020.
26. H. Ding, F. Y. Du, P. C. Liu, Z. J. Chen and J. C. Shen, "DNA-Carbon Dots Function as Fluorescent Vehicles for Drug Delivery," Acs Applied Materials & Interfaces, vol. 7, no. 12, pp. 6889-6897, 2015.
27. S. Karthik, B. Saha, S. K. Ghosh and N. D. P. Singh, "Photoresponsive quinoline tethered fluorescent carbon dots for regulated anticancer drug delivery," Chemical Communications, vol. 49, no. 89, pp. 10471-10473, 2013.
28. X. Lv, H. Yu, Q. Zhang, Q. Huang, X. Hong, T. Yu, H. Lan, C. Mei, W. Zhang and H. Luo, "SRXN1 stimulates hepatocellular carcinoma tumorigenesis and metastasis through modulating ROS/p65/BTG2 signalling," Journal of Cellular and Molecular Medicine, vol. 24, pp. 10714-10729, 2020.
29. Y. P. Sun, B. Zhou, Y. Lin, W. Wang, K. A. S. Fernando, P. Pathak, M. J. Meziani, B. A. Harruff, X. Wang, H. F. Wang, P. J. G. Luo, H. Yang, M. E. Kose, B. L. Chen, L. M. Veca and S. Y. Xie, "Quantum-sized carbon dots for bright and colorful photoluminescence," Journal of the American Chemical Society, vol. 128, no. 24, pp. 7756-7757, 2006.
30. S. N. Baker and G. A. Baker, "Luminescent Carbon Nanodots: Emergent Nanolights," Angewandte Chemie-International Edition, vol. 49, no. 38, pp. 6726-6744, 2010.
31. J. Hou, J. Yan, Q. Zhao, Y. Li, H. Ding and L. Ding, "A novel one-pot route for large-scale preparation of highly photoluminescent carbon quantum dots powders," Nanoscale, vol. 5, no. 20, pp. 9558-9561, 2013.
32. S. W. Zhang, J. X. Li, M. Y. Zeng, J. Z. Xu, X. K. Wang and W. P. Hu, "Polymer nanodots of graphitic carbon nitride as effective fluorescent probes for the detection of Fe3+ and Cu2+ ions," Nanoscale, vol. 6, no. 8, pp. 4157-4162, 2014.
33. Y.-P. Sun, B. Zhou, Y. Lin, W. Wang, K. A. S. Fernando, P. Pathak, M. J. Meziani, B. A. Harruff, X. Wang, H. Wang, P. G. Luo, H. Yang, M. E. Kose, B. Chen, L. M. Veca and S.-Y. Xie, "Quantum-Sized Carbon Dots for Bright and Colorful Photoluminescence," Journal of the American Chemical Society, vol. 128, no. 24, pp. 7756-7757, 2006.
34. L. Yang, Z. R. Wang, J. Wang, W. H. Jiang, X. W. Jiang, Z. S. Bai, Y. P. He, J. Q. Jiang, D. K. Wang and L. Yang, "Doxorubicin conjugated functionalizable carbon dots for nucleus targeted delivery and enhanced therapeutic efficacy," Nanoscale, vol. 8, no. 12, pp. 6801-6809, 2016.
35. M. Algarra, B. B. Campos, K. Radotic, D. Mutavdzic, T. Bandosz, J. Jimenez-Jimenez, E. Rodriguez-Castellon and J. C. G. E. da Silva, "Luminescent carbon nanoparticles: effects of chemical functionalization, and evaluation of Ag+ sensing properties," Journal of Materials Chemistry A, vol. 2, no. 22, pp. 8342-8351, 2014.
36. T. N. J. I. Edison, R. Atchudan, M. G. Sethuraman, J. J. Shim and Y. R. Lee, "Microwave assisted green synthesis of fluorescent N-doped carbon dots: Cytotoxicity and bio-imaging applications," Journal of Photochemistry and Photobiology B-Biology, vol. 161, pp. 154-161, 2016.
37. P. Yu, X. M. Wen, Y. R. Toh and J. Tang, "Temperature-Dependent Fluorescence in Carbon Dots," Journal of Physical Chemistry C, vol. 116, no. 48, pp. 25552-25557, 2012.
38. Y. Yuan, B. Guo, L. Hao, N. Liu, Y. Lin, W. Guo, X. Li and B. Gu, "Doxorubicin-loaded environmentally friendly carbon dots as a novel drug delivery system for nucleus targeted cancer therapy," Colloids & Surfaces B Biointerfaces, pp. 349, 2017.