1. Jeanneteau, F., et al., Bridging the gap between brain-derived neurotrophic factor and glucocorticoid effects on brain networks. Neuroendocrinology, 2019. 109(3): p. 277-284.
2. Anacker, C., et al., Role for the kinase SGK1 in stress, depression, and glucocorticoid effects on hippocampal neurogenesis. Proceedings of the National Academy of Sciences, 2013. 110(21): p. 8708-8713.
3. Brunson, K.L., et al., Long-term, progressive hippocampal cell loss and dysfunction induced by early-life administration of corticotropin-releasing hormone reproduce the effects of early-life stress. Proceedings of the National Academy of Sciences, 2001. 98(15): p. 8856-8861.
4. Provençal, N., et al., Glucocorticoid exposure during hippocampal neurogenesis primes future stress response by inducing changes in DNA methylation. Proceedings of the National Academy of Sciences, 2020. 117(38): p. 23280-23285.
5. Chen, C.-C., et al., Selective activation of parvalbumin interneurons prevents stress-induced synapse loss and perceptual defects. Molecular psychiatry, 2018. 23(7): p. 1614-1625.
6. Noorlander, C.W., et al., Antenatal glucocorticoid treatment affects hippocampal development in mice. PloS one, 2014. 9(1): p. e85671.
7. Koutmani, Y. and K.P. Karalis, Neural stem cells respond to stress hormones: distinguishing beneficial from detrimental stress. Frontiers in physiology, 2015. 6: p. 77.
8. Egeland, M., P.A. Zunszain, and C.M. Pariante, Molecular mechanisms in the regulation of adult neurogenesis during stress. Nature reviews neuroscience, 2015. 16(4): p. 189-200.
9. Yuen, E.Y., et al., Repeated stress causes cognitive impairment by suppressing glutamate receptor expression and function in prefrontal cortex. Neuron, 2012. 73(5): p. 962-977.
10. Zhang, T.-Y., et al., Environmental enrichment increases transcriptional and epigenetic differentiation between mouse dorsal and ventral dentate gyrus. Nature communications, 2018. 9(1): p. 1-11.
11. Snyder, J.S., et al., Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature, 2011. 476(7361): p. 458-461.
12. Crossin, K.L., et al., Glucocorticoid receptor pathways are involved in the inhibition of astrocyte proliferation. Proceedings of the National Academy of Sciences, 1997. 94(6): p. 2687-2692.
13. Kirby, E.D., et al., Acute stress enhances adult rat hippocampal neurogenesis and activation of newborn neurons via secreted astrocytic FGF2. Elife, 2013. 2: p. e00362.
14. Turner, C.A., et al., Fibroblast growth factor-2 (FGF2) augmentation early in life alters hippocampal development and rescues the anxiety phenotype in vulnerable animals. Proceedings of the National Academy of Sciences, 2011. 108(19): p. 8021-8025.
15. Qian, X., et al., FGF2 concentration regulates the generation of neurons and glia from multipotent cortical stem cells. Neuron, 1997. 18(1): p. 81-93.
16. Teissier, A., et al., Early-life stress impairs postnatal oligodendrogenesis and adult emotional behaviour through activity-dependent mechanisms. Molecular psychiatry, 2020. 25(6): p. 1159-1174.
17. Kaech, S. and G. Banker, Culturing hippocampal neurons. Nature Protocols, 2006. 1(5): p. 2406-2415.
18. Wittenmayer, N., et al., Postsynaptic Neuroligin1 regulates presynaptic maturation. Proceedings of the National Academy of Sciences, 2009. 106(32): p. 13564-13569.
19. Choi, G.E., et al., BNIP3L/NIX-mediated mitophagy protects against glucocorticoid-induced synapse defects. Nature communications, 2021. 12(1): p. 1-18.
20. Woodbury, M.E. and T. Ikezu, Fibroblast growth factor-2 signaling in neurogenesis and neurodegeneration. Journal of neuroimmune pharmacology, 2014. 9(2): p. 92-101.
21. Kiyota, T., et al., FGF2 gene transfer restores hippocampal functions in mouse models of Alzheimer's disease and has therapeutic implications for neurocognitive disorders. Proceedings of the National Academy of Sciences, 2011. 108(49): p. 1339-1348.
22. MacDonald, A.J., et al., Astrocytes in neuroendocrine systems: An overview. Journal of neuroendocrinology, 2019. 31(5): p. e12726.
23. Tyzack, G.E., et al., A neuroprotective astrocyte state is induced by neuronal signal EphB1 but fails in ALS models. Nature communications, 2017. 8(1): p. 1-17.
24. Clarke, L.E., et al., Normal aging induces A1-like astrocyte reactivity. Proceedings of the National Academy of Sciences, 2018. 115(8): p. 1896-1905.
25. Liddelow, S.A., et al., Neurotoxic reactive astrocytes are induced by activated microglia. Nature, 2017. 541(7638): p. 481-487.
26. Pearson-Leary, J., D.M. Osborne, and E.C. McNay, Role of glia in stress-induced enhancement and impairment of memory. Frontiers in integrative neuroscience, 2016. 9: p. 63.
27. Regnell, C.E., et al., Hippocampal adult neurogenesis is maintained by Neil3-dependent repair of oxidative DNA lesions in neural progenitor cells. Cell reports, 2012. 2(3): p. 503-510.
28. Sandi, C., Glucocorticoids act on glutamatergic pathways to affect memory processes. Trends in neurosciences, 2011. 34(4): p. 165-176.
29. Dunham-Ems, S.M., et al., Fibroblast growth factor receptor-1 (FGFR1) nuclear dynamics reveal a novel mechanism in transcription control. Molecular biology of the cell, 2009. 20(9): p. 2401-2412.
30. Terranova, C., et al., Global developmental gene programing involves a nuclear form of fibroblast growth factor receptor-1 (FGFR1). PloS one, 2015. 10(4): p. e0123380.
31. Fang, X., et al., Control of CREB-binding protein signaling by nuclear fibroblast growth factor receptor-1: a novel mechanism of gene regulation. Journal of Biological Chemistry, 2005. 280(31): p. 28451-28462.
32. Suri, D., et al., Early stress evokes age-dependent biphasic changes in hippocampal neurogenesis, BDNF expression, and cognition. Biological psychiatry, 2013. 73(7): p. 658-666.
33. Murthy, S. and E. Gould, How early life adversity influences defensive circuitry. Trends in neurosciences, 2020. 43(4): p. 200-212.
34. Zhao, Y., et al., A mouse model of depression induced by repeated corticosterone injections. European journal of pharmacology, 2008. 581(1-2): p. 113-120.
35. Bakker, J.M., F. Van Bel, and C.J. Heijnen, Neonatal glucocorticoids and the developing brain: short-term treatment with life-long consequences? Trends in neurosciences, 2001. 24(11): p. 649-653.
36. Vicini, S., The role of GABA and glutamate on adult neurogenesis. The Journal of physiology, 2008. 586: p. 3737.
37. Tyzio, R., et al., The establishment of GABAergic and glutamatergic synapses on CA1 pyramidal neurons is sequential and correlates with the development of the apical dendrite. Journal of neuroscience, 1999. 19(23): p. 10372-10382.
38. Raballo, R., et al., Basic fibroblast growth factor (Fgf2) is necessary for cell proliferation and neurogenesis in the developing cerebral cortex. Journal of neuroscience, 2000. 20(13): p. 5012-5023.
39. Knafo, S., et al., Facilitation of AMPA receptor synaptic delivery as a molecular mechanism for cognitive enhancement. PloS biology, 2012. 10(2): p. e1001262.
40. Huang, J.-Y., M.L. Miskus, and H.-C. Lu, FGF-FGFR mediates the activity-dependent dendritogenesis of layer IV neurons during barrel formation. Journal of neuroscience, 2017. 37(50): p. 12094-12105.
41. Park, M., AMPA receptor trafficking for postsynaptic potentiation. Frontiers in cellular neuroscience, 2018. 12: p. 361.
42. Gunn, B. and T. Baram, Stress and seizures: space, time and hippocampal circuits. Trends in neurosciences, 2017. 40(11): p. 667-679.
43. Iwata, T. and R.F. Hevner, Fibroblast growth factor signaling in development of the cerebral cortex. Development, growth & differentiation, 2009. 51(3): p. 299-323.
44. Noda, M., et al., FGF-2 released from degenerating neurons exerts microglial-induced neuroprotection via FGFR3-ERK signaling pathway. Journal of neuroinflammation, 2014. 11(1): p. 1-11.
45. Saffell, J.L., et al., Expression of a dominant negative FGF receptor inhibits axonal growth and FGF receptor phosphorylation stimulated by CAMs. Neuron, 1997. 18(2): p. 231-242.
46. Chioni, A.-M. and R. Grose, FGFR1 cleavage and nuclear translocation regulates breast cancer cell behavior. Journal of cell biology, 2012. 197(6): p. 801-817.
47. Letellier, M., et al., A unique intracellular tyrosine in neuroligin-1 regulates AMPA receptor recruitment during synapse differentiation and potentiation. Nature communications, 2018. 9(1): p. 1-17.
48. Krugers, H.J., C.C. Hoogenraad, and L. Groc, Stress hormones and AMPA receptor trafficking in synaptic plasticity and memory. Nature reviews neuroscience, 2010. 11(10): p. 675.
49. Van Der Kooij, M.A., et al., Impaired hippocampal neuroligin-2 function by chronic stress or synthetic peptide treatment is linked to social deficits and increased aggression. Neuropsychopharmacology, 2014. 39(5): p. 1148-1158.
50. Schnell, E., et al., Neuroligin-1 overexpression in newborn granule cells in vivo. PloS biology, 2012. 10: p. e48045.
51. Cheng, W., F. Han, and Y. Shi, Neonatal isolation modulates glucocorticoid-receptor function and synaptic plasticity of hippocampal and amygdala neurons in a rat model of single prolonged stress. Journal of affective disorders, 2019. 246: p. 682-694.