[1] K. Wu, Y. Jiang, W. Zhou, B. Zhang, Y. Li, F. Xie, J. Zhang, X. Wang, M. Yan, Q. Xu, Z. Ren, W. Chen, and W. Cao, Long Noncoding RNA RC3H2 Facilitates Cell Proliferation and Invasion by Targeting MicroRNA-101-3p/EZH2 Axis in OSCC. Mol Ther Nucleic Acids 20 (2020) 97-110.
[2] N.K. Biswas, C. Das, S. Das, A. Maitra, S. Nair, T. Gupta, A.K. D'Cruz, R. Sarin, and P.P. Majumder, Lymph node metastasis in oral cancer is strongly associated with chromosomal instability and DNA repair defects. Int J Cancer 145 (2019) 2568-2579.
[3] W. He, H. Zhang, F. Han, X. Chen, R. Lin, W. Wang, H. Qiu, Z. Zhuang, Q. Liao, W. Zhang, Q. Cai, Y. Cui, W. Jiang, H. Wang, and Z. Ke, CD155T/TIGIT Signaling Regulates CD8(+) T-cell Metabolism and Promotes Tumor Progression in Human Gastric Cancer. Cancer Res 77 (2017) 6375-6388.
[4] E.D. Thompson, M. Zahurak, A. Murphy, T. Cornish, N. Cuka, E. Abdelfatah, S. Yang, M. Duncan, N. Ahuja, J.M. Taube, R.A. Anders, and R.J. Kelly, Patterns of PD-L1 expression and CD8 T cell infiltration in gastric adenocarcinomas and associated immune stroma. Gut 66 (2017) 794-801.
[5] Han, Xue, Chen, and Lieping, Anti-PD-1/PD-L1 therapy of human cancer: past, present, and future.
[6] H.B. Jie, R.M. Srivastava, A. Argiris, J.E. Bauman, L.P. Kane, and R.L. Ferris, Increased PD-1(+) and TIM-3(+) TILs during Cetuximab Therapy Inversely Correlate with Response in Head and Neck Cancer Patients. Cancer immunology research 5 (2017) 408-416.
[7] K.A. Frauwirth, J.L. Riley, M.H. Harris, R.V. Parry, J.C. Rathmell, D.R. Plas, R.L. Elstrom, C.H. June, and C.B. Thompson, The CD28 signaling pathway regulates glucose metabolism. Immunity 16 (2002) 769-77.
[8] R.V. Parry, J.M. Chemnitz, K.A. Frauwirth, A.R. Lanfranco, I. Braunstein, S.V. Kobayashi, P.S. Linsley, C.B. Thompson, and J.L. Riley, CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Molecular and cellular biology 25 (2005) 9543-53.
[9] V.A. Gerriets, and J.C. Rathmell, Metabolic pathways in T cell fate and function. Trends in immunology 33 (2012) 168-73.
[10] N.J. Maciver, S.R. Jacobs, H.L. Wieman, J.A. Wofford, J.L. Coloff, and J.C.J.J.o.L.B. Rathmell, Glucose metabolism in lymphocytes is a regulated process with significant effects on immune cell function and survival. 84 (2008).
[11] I. Atreya, C.C. Schimanski, C. Becker, S. Wirtz, H. Dornhoff, E. Schnurer, M.R. Berger, P.R. Galle, W. Herr, and M.F. Neurath, The T-box transcription factor eomesodermin controls CD8 T cell activity and lymph node metastasis in human colorectal cancer. Gut 56 (2007) 1572-8.
[12] J.P. Sleeman, The lymph node pre-metastatic niche. J Mol Med (Berl) 93 (2015) 1173-84.
[13] M. Broggi, M. Schmaler, N. Lagarde, and S.W.J.J.V.E. Rossi, Isolation of murine lymph node stromal cells. (2014).
[14] N. Eckert, M. Permanyer, K. Yu, K. Werth, and R. Förster, Chemokines and other mediators in the development and functional organization of lymph nodes. Immunological reviews 289 (2019) 62-83.
[15] G. Gasteiger, M. Ataide, and W. Kastenmüller, Lymph node - an organ for T-cell activation and pathogen defense. Immunological reviews 271 (2016) 200-20.
[16] C. Sun, R. Mezzadra, and T.N. Schumacher, Regulation and Function of the PD-L1 Checkpoint. Immunity 48 (2018) 434-452.
[17] C.S. Palmer, M. Ostrowski, B. Balderson, N. Christian, and S.M. Crowe, Glucose metabolism regulates T cell activation, differentiation, and functions. Frontiers in immunology 6 (2015) 1.
[18] D.E. Speiser, P.C. Ho, and G.J.N.R.I. Verdeil, Regulatory circuits of T cell function in cancer. (2016).
[19] J. Borst, T. Ahrends, N. Bąbała, C.J.M. Melief, and W. Kastenmüller, CD4(+) T cell help in cancer immunology and immunotherapy. Nature reviews. Immunology 18 (2018) 635-647.
[20] W.Y. Ho, C. Yee, and P.D. Greenberg, Adoptive therapy with CD8(+) T cells: it may get by with a little help from its friends. The Journal of clinical investigation 110 (2002) 1415-7.
[21] M.C. Chang, C.P. Chiang, C.L. Lin, J.J. Lee, L.J. Hahn, and J.H. Jeng, Cell-mediated immunity and head and neck cancer: with special emphasis on betel quid chewing habit. Oral Oncol 41 (2005) 757-75.
[22] J. Crespo, H. Sun, T.H. Welling, Z. Tian, and W.J.C.O.i.I. Zou, T cell anergy, exhaustion, senescence, and stemness in the tumor microenvironment. 25 (2013) 214-221.
[23] M. Brown, F.P. Assen, A. Leithner, J. Abe, H. Schachner, G. Asfour, Z. Bago-Horvath, J.V. Stein, P. Uhrin, and M.J.S. Sixt, Lymph node blood vessels provide exit routes for metastatic tumor cell dissemination in mice. 359 (2018) 1408-1411.
[24] D.S. Shin, and A.J.C.O.i.I. Ribas, The evolution of checkpoint blockade as a cancer therapy: what's here, what's next? 33 (2015) 23-35.
[25] R. Karim, E.S. Jordanova, S.J. Piersma, G.G. Kenter, L. Chen, J.M. Boer, C.J. Melief, and S.H. van der Burg, Tumor-expressed B7-H1 and B7-DC in relation to PD-1+ T-cell infiltration and survival of patients with cervical carcinoma. Clin Cancer Res 15 (2009) 6341-7.
[26] A.K. Mattox, J. Lee, W.H. Westra, R.H. Pierce, R. Ghossein, W.C. Faquin, T.J. Diefenbach, L.G. Morris, D.T. Lin, L.J. Wirth, A. Lefranc-Torres, E. Ishida, P.D. Chakravarty, L. Johnson, Y.C. Zeng, H. Chen, M.C. Poznansky, N.M. Iyengar, and S.I. Pai, PD-1 Expression in Head and Neck Squamous Cell Carcinomas Derives Primarily from Functionally Anergic CD4(+) TILs in the Presence of PD-L1(+) TAMs. Cancer Res 77 (2017) 6365-6374.
[27] A.M. Seifert, A. Eymer, M. Heiduk, R. Wehner, and L.J.C. Seifert, PD-1 Expression by Lymph Node and Intratumoral Regulatory T Cells Is Associated with Lymph Node Metastasis in Pancreatic Cancer. 12 2756.
[28] H. Terada, Y. Shimode, M. Furukawa, Y. Sato, and N.J.M. Hanai, The Utility of Ultrasonography in the Diagnosis of Cervical Lymph Nodes after Chemoradiotherapy for Head and Neck Squamous Cell Carcinoma. 57 (2021).
[29] M. Magnano, M. Bussi, A.D. Stefani, F. Milan, W. Lerda, V. Ferrero, F. Gervasio, R. Ragona, P. Gabriele, and G.J.A.o.-l. Valente, Prognostic factors for head and neck tumor recurrence. 115 (1995) 833-8.
[30] X. Ren, H. Wu, J. Lu, Y. Zhang, Z.J.C.B. Liang, and Therapy, PD1 protein expression in tumor infiltrated lymphocytes rather than PDL1 in tumor cells predicts survival in triple-negative breast cancer. 19 (2018) 00-00.
[31] D. O'Sullivan, D.E. Sanin, E.J. Pearce, and E.L.J.N.R.I. Pearce, Metabolic interventions in the immune response to cancer. 19 (2019) 1.
[32] Increased Tumor Glycolysis Characterizes Immune Resistance to Adoptive T Cell Therapy %J Cell Metabolism. (2018) S1550413118301785.
[33] B. Bengsch, A.L. Johnson, M. Kurachi, P.M. Odorizzi, K.E. Pauken, J. Attanasio, E. Stelekati, L.M. McLane, M.A. Paley, G.M. Delgoffe, and E.J. Wherry, Bioenergetic Insufficiencies Due to Metabolic Alterations Regulated by the Inhibitory Receptor PD-1 Are an Early Driver of CD8(+) T Cell Exhaustion. Immunity 45 (2016) 358-73.
[34] K. Renner, C. Bruss, A. Schnell, G. Koehl, and M.J.C.R. Kreutz, Restricting Glycolysis Preserves T Cell Effector Functions and Augments Checkpoint Therapy. 29 (2019) 135-150.e9.