[1] T.C. Walther, R.V. Jr. Farese, Lipid droplets and cellular lipid metabolism. Annu Rev Biochem. 81(2012) 687-714.
[2] P. Nguyen, V. Leray, M. Diez, et al. Liver lipid metabolism. J Anim Physiol Anim Nutr (Berl). 92(2008) 272-283.
[3] R. Dentin, J.P. Pégorier, F. Benhamed, et al. Hepatic glucokinase is required for the synergistic action of ChREBP and SREBP-1c on glycolytic and lipogenic gene expression. J Biol Chem. 279(2004) 20314-20326.
[4] M. Ma, R. Duan, L. Shen, et al. The lncRNA Gm15622 stimulates SREBP-1c expression and hepatic lipid accumulation by sponging the miR-742-3p in mice. J Lipid Res. 61(2020) 1052-1064.
[5] M.S. Brown, J.L. Goldstein, The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell. 89(1997) 331-340.
[6] J.D. Horton, J.L. Goldstein, M.S. Brown, SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest. 109(2002) 1125-1131.
[7] P. Ferré, F. Foufelle, SREBP-1c transcription factor and lipid homeostasis: clinical perspective. Horm Res. 68(2007):72-82.
[8] C.P. Ponting, P.L. Oliver, W. Reik, Evolution and functions of long noncoding RNAs. Cell. 136(2009) 629-641.
[9] Y. Zeng, K. Ren, X. Zhu, et al. Long noncoding RNAs: advances in lipid metabolism. Adv Clin Chem. 87(2018)1-36.
[10] M.C. Lai, Z. Yang, L. Zhou, et al. Long non-coding RNA MALAT-1 overexpression predicts tumor recurrence of hepatocellular carcinoma after liver transplantation. Med Oncol. 29(2012) 1810-1816.
[11] Z. Yang, L. Zhou, L.M. Wu, et al. Overexpression of long non-coding RNA HOTAIR predicts tumor recurrence in hepatocellular carcinoma patients following liver transplantation. Ann Surg Oncol. 18(2011) 1243-1250.
[12] C. Liu, Z. Yang, J. Wu, et al. Long noncoding RNA H19 interacts with polypyrimidine tract-binding protein 1 to reprogram hepatic lipid homeostasis. Hepatology. 67(2018) 1768-1783.
[13] D. Li, M. Cheng, Y. Niu, et al. Identification of a novel human long non-coding RNA that regulates hepatic lipid metabolism by inhibiting SREBP-1c. Int J Biol Sci. 13(2017)349-357.
[14] J.G. Park, G. Kim, S.Y. Jang, et al. Plasma long noncoding RNA LeXis is a potential diagnostic marker for non-alcoholic steatohepatitis. Life (Basel). 2020;10(10):230.
[15] S. Di Mauro, F. Salomone, A. Scamporrino, et al. Coffee restores expression of lncRNAs involved in steatosis and fibrosis in a mouse model of NAFLD. Nutrients. 13(2021) 2952.
[16] X. Shi, Y.T. Wei, H. Li, et al. Long non-coding RNA H19 in atherosclerosis: what role? Mol Med. 26(2020) 72.
[17] Q. Chen, C. Xiong, K. Jia, et al. Hepatic transcriptome analysis from HFD-fed mice defines a long noncoding RNA regulating cellular cholesterol levels. J Lipid Res. 60(2019) 341-352.
[18] Y. Li, Y. Luan, J. Li, et al. Exosomal miR-199a-5p promotes hepatic lipid accumulation by modulating MST1 expression and fatty acid metabolism. Hepatol Int. 14(2020) 1057-1074.
[19] M. Spite, Resolving lipids: lipoxins regulate reverse cholesterol transport. Cell Metab. 20(2014) 935-937.
[20] J.D. Horton, J.L. Goldstein, M.S. Brown, SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest. 109(2002) 1125-1131.
[21] C.P. Day, O.F. James, Steatohepatitis: a tale of two "hits"? Gastroenterology. 114(1998) 842-845.
[22] P.W. Siri-Tarino, Q. Sun, F.B. Hu, et al. Saturated fat, carbohydrate, and cardiovascular disease. Am J Clin Nutr. 91(2010) 502-509.
[23] O. Vvedenskaya, T.D. Rose, O. Knittelfelder, et al. Nonalcoholic fatty liver disease stratification by liver lipidomics. J Lipid Res. 62(2021)100104.
[24] H. Yoon, J.L. Shaw, M.C. Haigis, et al. Lipid metabolism in sickness and in health: emerging regulators of lipotoxicity. Mol Cell. 81(2021) 3708-3730.
[25] Q. Lu, P. Guo, A. Liu, et al. The role of long noncoding RNA in lipid, cholesterol, and glucose metabolism and treatment of obesity syndrome. Med Res Rev. 41(2021) 1751-1774.
[26] M. Lee, S.H. Lee, J. Kang, et al. Salicortin-derivatives from Salix pseudo-lasiogyne twigs inhibit adipogenesis in 3T3-L1 cells via modulation of C/EBPα and SREBP1c dependent pathway. Molecules. 18(2013) 10484-10496.
[27] A. Caron, D. Richard, M. Laplante, The roles of mTOR complexes in lipid metabolism. Annu Rev Nutr. 35(2015)321-348.
[28] D. Garcia, and R. J. Shaw, AMPK: mechanisms of cellular energy sensing and restoration of metabolic balance. Mol Cell. 66(2017) 789-800.
[29] E. A. Day, R. J. Ford, and G. R. Steinberg, AMPK as a therapeutic target for treating metabolic diseases. Trends Endocrinol Metab. 28(2017) 545-560.
[30] K. Düvel, J. L. Yecies, S. Menon, et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell. 39(2010) 171-183.