[1] Z. Akkus, A. Galimzianova, A. Hoogi, D.L. Rubin, B.J. Erickson, Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions, J. Digit. Imaging. (2017). https://doi.org/10.1007/s10278-017-9983-4.
[2] M. Havaei, A. Davy, D. Warde-Farley, A. Biard, A. Courville, Y. Bengio, C. Pal, P.M. Jodoin, H. Larochelle, Brain tumor segmentation with Deep Neural Networks, Med. Image Anal. (2017). https://doi.org/10.1016/j.media.2016.05.004.
[3] W. Zhang, R. Li, H. Deng, L. Wang, W. Lin, S. Ji, D. Shen, Deep convolutional neural networks for multi-modality isointense infant brain image segmentation, Neuroimage. (2015). https://doi.org/10.1016/j.neuroimage.2014.12.061.
[4] J. Long, E. Shelhamer, T. Darrell, Fully convolutional networks for semantic segmentation, in: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., 2015. https://doi.org/10.1109/CVPR.2015.7298965.
[5] H. Noh, S. Hong, B. Han, Learning deconvolution network for semantic segmentation, in: Proc. IEEE Int. Conf. Comput. Vis., 2015. https://doi.org/10.1109/ICCV.2015.178.
[6] O. Ronneberger, P. Fischer, T. Brox, U-net: convolutional networks for biomedical image segmentation. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. Lecture Notes in Computer Science., in: Med. Image Comput. Comput. Interv. – MICCAI 2015. MICCAI 2015. Lect. Notes Comput. Sci., 2015.
[7] L. Liu, J. Cheng, Q. Quan, F.X. Wu, Y.P. Wang, J. Wang, A survey on U-shaped networks in medical image segmentations, Neurocomputing. (2020). https://doi.org/10.1016/j.neucom.2020.05.070.
[8] H. Dong, G. Yang, F. Liu, Y. Mo, Y. Guo, Automatic brain tumor detection and segmentation using U-net based fully convolutional networks, in: Commun. Comput. Inf. Sci., 2017. https://doi.org/10.1007/978-3-319-60964-5_44.
[9] V. Iglovikov, A. Rakhlin, A. Kalinin, A. Shvets, Pediatric Bone Age Assessment Using Deep Convolutional Neural Networks, BioRxiv. (2017). https://doi.org/10.1101/234120.
[10] J. Xu, X. Luo, G. Wang, H. Gilmore, A. Madabhushi, A Deep Convolutional Neural Network for segmenting and classifying epithelial and stromal regions in histopathological images, Neurocomputing. (2016). https://doi.org/10.1016/j.neucom.2016.01.034.
[11] P. Kleczek, J. Jaworek-Korjakowska, M. Gorgon, A novel method for tissue segmentation in high-resolution H&E-stained histopathological whole-slide images, Comput. Med. Imaging Graph. (2020). https://doi.org/10.1016/j.compmedimag.2019.101686.
[12] O. Ronneberger, P. Fischer, T. Brox, U-net: Convolutional networks for biomedical image segmentation, in: Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), 2015. https://doi.org/10.1007/978-3-319-24574-4_28.
[13] A. Garcia-Garcia, S. Orts-Escolano, S.O. Oprea, V. Villena-Martinez, J. Garcia-Rodriguez, A review on deep learning techniques applied to semantic segmentation, ArXiv. (2017).
[14] N. Ibtehaz, M.S. Rahman, MultiResUNet: Rethinking the U-Net architecture for multimodal biomedical image segmentation, ArXiv. (2019).
[15] S.J. Frank, Resource-frugal classification and analysis of pathology slides using image entropy, Biomed. Signal Process. Control. 66 (2021) 102388. https://doi.org/10.1016/j.bspc.2020.102388.
[16] K.H. Yu, F. Wang, G.J. Berry, C. Ré, R.B. Altman, M. Snyder, I.S. Kohane, Classifying non-small cell lung cancer types and transcriptomic subtypes using convolutional neural networks, J. Am. Med. Informatics Assoc. (2020). https://doi.org/10.1093/jamia/ocz230.
[17] N. Coudray, P.S. Ocampo, T. Sakellaropoulos, N. Narula, M. Snuderl, D. Fenyö, A.L. Moreira, N. Razavian, A. Tsirigos, Classification and mutation prediction from non–small cell lung cancer histopathology images using deep learning, Nat. Med. (2018). https://doi.org/10.1038/s41591-018-0177-5.
[18] B.E. Bejnordi, M. Veta, P.J. Van Diest, B. Van Ginneken, N. Karssemeijer, G. Litjens, J.A.W.M. Van Der Laak, M. Hermsen, Q.F. Manson, M. Balkenhol, O. Geessink, N. Stathonikos, M.C.R.F. Van Dijk, P. Bult, F. Beca, A.H. Beck, D. Wang, A. Khosla, R. Gargeya, H. Irshad, A. Zhong, Q. Dou, Q. Li, H. Chen, H.J. Lin, P.A. Heng, C. Haß, E. Bruni, Q. Wong, U. Halici, M.Ü. Öner, R. Cetin-Atalay, M. Berseth, V. Khvatkov, A. Vylegzhanin, O. Kraus, M. Shaban, N. Rajpoot, R. Awan, K. Sirinukunwattana, T. Qaiser, Y.W. Tsang, D. Tellez, J. Annuscheit, P. Hufnagl, M. Valkonen, K. Kartasalo, L. Latonen, P. Ruusuvuori, K. Liimatainen, S. Albarqouni, B. Mungal, A. George, S. Demirci, N. Navab, S. Watanabe, S. Seno, Y. Takenaka, H. Matsuda, H.A. Phoulady, V. Kovalev, A. Kalinovsky, V. Liauchuk, G. Bueno, M.M. Fernandez-Carrobles, I. Serrano, O. Deniz, D. Racoceanu, R. Venâncio, Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer, JAMA - J. Am. Med. Assoc. 318 (2017) 2199–2210. https://doi.org/10.1001/jama.2017.14585.
[19] C.F. Sabottke, B.M. Spieler, The Effect of Image Resolution on Deep Learning in Radiography, Radiol. Artif. Intell. 2 (2020). https://doi.org/10.1148/ryai.2019190015.
[20] B. Lakshmanan, S. Anand, T. Jenitha, Stain removal through color normalization of haematoxylin and eosin images: A review, in: J. Phys. Conf. Ser., 2019. https://doi.org/10.1088/1742-6596/1362/1/012108.
[21] E. Reinhard, M. Ashikhmin, B. Gooch, P. Shirley, Color transfer between images, IEEE Comput. Graph. Appl. 21 (2001). https://doi.org/10.1109/38.946629.
[22] A. Vahadane, T. Peng, A. Sethi, S. Albarqouni, L. Wang, M. Baust, K. Steiger, A.M. Schlitter, I. Esposito, N. Navab, Structure-Preserving Color Normalization and Sparse Stain Separation for Histological Images, IEEE Trans. Med. Imaging. 35 (2016). https://doi.org/10.1109/TMI.2016.2529665.
[23] GitHub - zhixuhao/unet: unet for image segmentation, (n.d.). https://github.com/zhixuhao/unet (accessed October 30, 2020).
[24] About the 2D EM segmentation challenge | ISBI Challenge: Segmentation of neuronal structures in EM stacks, (n.d.). http://brainiac2.mit.edu/isbi_challenge/ (accessed October 30, 2020).
[25] UNet: a convolutional network for biomedical image segmentation, (n.d.). https://hpc.nih.gov/apps/UNet.html (accessed November 17, 2020).
[26] T. Tan, G. Cao, Efficient Execution of Deep Neural Networks on Mobile Devices with NPU, in: 2021. https://doi.org/10.1145/3412382.3458272.
[27] C. Morikawa, M. Kobayashi, M. Satoh, Y. Kuroda, T. Inomata, H. Matsuo, T. Miura, M. Hilaga, Image and video processing on mobile devices: a survey, Vis. Comput. (2021). https://doi.org/10.1007/s00371-021-02200-8.
[28] M. Cui, D.Y. Zhang, Artificial intelligence and computational pathology, Lab. Investig. 101 (2021). https://doi.org/10.1038/s41374-020-00514-0.
[29] G. Zouridakis, T. Wadhawan, N. Situ, R. Hu, X. Yuan, K. Lancaster, C.M. Queen, Melanoma and other skin lesion detection using smart handheld devices, Methods Mol. Biol. 1256 (2015). https://doi.org/10.1007/978-1-4939-2172-0_30.