[1] J. Yang, B. Jiang, B. Li, K. Tian, and Z. Lv, A Fast Image Retrieval Method Designed for Network Big Data, IEEE Transactions on Industrial Informatics, 13(5) (2017) 2350–2359.
[2] J. Yue, Z. Li, L. Liu, and Z. Fu, Content based Image Retrieval using Color and Texture Fused Features, Journal of Mathematical and Computer Modelling, 54(3-4) (2011) 1121–1127.
[3] M. Fachrurrozi, A. Fiqih, B. R. Saputra, R. Algani, and A. Primanita, Content Based Image Retrieval for Multi-Objects Fruits Recognition using K-Means and K-Nearest Neighbor, in the Proceedings of International Conference on Data and Software Engineering (ICoDSE), (2017) 1–6.
[4] Y. Cai, Y. Li, C. Qiu, J. Ma, and X. Gao, Medical Image Retrieval based on Convolutional Neural Network and Supervised Hashing, IEEE Access, 7 (2019) 51877–51885.
[5] N. Khan and W. Khan, Normalised Euclidean Distance based Image Retrieval using Coefficient Analysis, Journal of Advances in Computing and Information Technology, (2013) 777–785.
[6] X. M. Ren, X. F. Wang, and Y. Zhao, An Efficient Multi-Scale Overlapped Block LBP Approach for Leaf Image Recognition, in the Proceedings of International Conference on Intelligent Computing, (2012) 237–243.
[7] M. L. Wu, C. S. Fahn, and Y. F. Chen, Image-format-independent Tampered Image Detection based on Overlapping Concurrent Directional Patterns and Neural Networks, Journal of Applied Intelligence, 47(2) (2017) 347–361.
[8] G. Zolynski, T. Braun, and K. Berns, Local Binary Pattern based Texture Analysis in Real Time using a Graphics Processing Unit, Journal of Verein Deutscher Ingenieure Berichte, 12 (2008) 321–328.
[9] V. Takala, T. Ahonen, and M. Pietikainen, Block-Based Methods for Image Retrieval using Local Binary Patterns, in the Proceedings of Scandinavian Conference on Image Analysis, (2005) 882–891.
[10] S. Liao, X. Zhu, Z. Lei, L. Zhang, and S. Z. Li, Learning Multi-Scale Block Local Binary Patterns for Face Recognition, in the Proceedings of International Conference on Biometrics, (2007) 828–837.
[11] L. Zhang, R. Chu, S. Xiang, S. Liao, and S. Z. Li, Face Detection based on Multi-Block LBP Representation, in the Proceedings of International Conference on Biometrics, (2007) 11–18.
[12] V. H. Mahale, M. M. H. Ali, P. L. Yannawar, and A. T. Gaikwad, Image Inconsistency Detection using Local Binary Pattern, Journal of Procedia Computer Science, 115 (2017) 501–508.
[13] K. Firuzi, M. Vakilian, B. T. Phung, and T. R. Blackburn, Partial Discharges Pattern Recognition of Transformer Defect Model by LBP and HoG Features, IEEE Transactions on Power Delivery, 34(2) (2018) 542–550.
[14] V. Chaurasia and Vaishali, Statistical Feature Extraction based Technique for Fast Fractal Image Compression, Journal of Visual Communication and Image Representation, 41 (2016) 87–95.
[15] S. Singh and N. P. Singh, Machine Learning based Classification of Good and Rotten Apple, Journal of Recent Trends in Communication, Computing, and Electronics, 524 (2019) 377–386.
[16] B. Khaldi, O. Aiadi, and K. M. Lamine, Image Representation using Complete Multitexton Histogram, Journal of Multimedia Tools and Applications, 79 (2020) 1–19.
[17] M. J. Khan, M. A. Riaz, H. Shahid, M. S. Khan, Y. Amin, J. Loo, and H. Tenhunen, Texture Representation through Overlapped Multioriented Tri-scale Local Binary Pattern, IEEE Access, 7 (2019) 66668–66679.
[18] D. Wu, K. Kim, G. El Fakhri, and Q. Li, Iterative Low-dose CT Reconstruction with Priors Trained by Artificial Neural Network, IEEE Transactions on Medical Imaging, 36(12) (2017) 2479–2486.
[19] G. M. Galshetwar, P. W. Patil, A. B. Gonde, L. M. Waghmare, and R. Maheshwari, Local Directional Gradient Based Feature Learning for Image Retrieval, in the Proceedings of IEEE Thirteenth International Conference on Industrial and Information Systems (ICIIS), (2018) 113–118.
[20] J. S. Arunalatha, Y. Rangaswamy, K. Shaila, K. B. Raja, D. Anvekar, K. R. Venugopal, S. S. Iyengar, and L. M. Patnaik, “IRHDF: Iris Recognition using Hybrid Domain Features,” in the Proceedings of Annual IEEE India Conference (INDICON), (2015) 1–5.
[21] P. E. Gill and W. Murray, Safeguarded Steplength Algorithms for Optimization using Descent Methods, Scientific and Technical Aerospace Reports, 13(7) (1975) 5601–6503.
[[22] D. E. Rumelhart, Learning Representations by Error Propagation, in DE Rumelhart, JL McClelland and PDP Research Group, Journal of Parallel Distributed Processing, 1 (1986) 318–362.
[23] G. E. Hinton, Connectionist Learning Procedures, Journal of Machine Learning, 3, (1990) 555–610.
[24] Y. LeCun, Generalization and Network Design Strategies, Journal of Connectionism in Perspective, 19, (1989) 143–155.
[25] M. R. Hestenes, Conjugate Direction Methods in Optimization, 12 (2012) 231–310. [26] M. J. D. Powell, Restart Procedures for the Conjugate Gradient Method, Journal of Mathematical Programming, 12(1) (1977) 241–254.
[[27] P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization, Society for Industrial and Applied Mathematics, (2019) 357–401.
[28] R. Fletcher, Practical Methods of Optimization, John Wiley and Sons, Scotland, (2013).
[29] E. M. Johansson, F. U. Dowla, and D. M. Goodman, Backpropagation Learning for Multilayer Feed-Forward Neural Networks using the Conjugate Gradient Method, International Journal of Neural Systems, 2(4) (1991) 291–301.
[30] M. Moller, Supervised Learning on Large Redundant Training Sets, International Journal of Neural Systems, 4(1) (1993) 15–25.
[31] R. Battiti and F. Masulli, BFGS Optimization for Faster and Automated Supervised Learning, in the Proceedings of International Conference on Neural Network, (1990) 757–760.
[32] O. A. Vatamanu, M. Frandes, M. Ionescu, and S. Apostol, Content based Image Retrieval using Local Binary Pattern, Intensity Histogram and Color Coherence Vector, in the Proceedings of e-Health and Bioengineering Conference (EHB), (2013) 1–6.
[33] T. Ojala, M. Pietikainen, and T. Maenpaa, A Generalized Local Binary Pattern Operator for Multiresolution Gray Scale and Rotation Invariant Texture Classification, in the Proceedings of International Conference on Advances in Pattern Recognition, (2001) 399–408.
[34] T. Barbu, A. Ciobanu, and M. Costin, Unsupervised Color-based Image Recognition using a LAB Feature Extraction Technique, Journal of Buletinul Institutului Politehnic Iasi, Universitatea Tehnica, Gheorghe Asachi, 57 (2011) 33–41.
[35] C. S. Hlaing and S. M. M. Zaw, Tomato Plant Diseases Classification using Statistical Texture Feature and Color Feature, in the Proceedings of IEEE/ACIS Seventeenth International Conference on Computer and Information Science (ICIS), (2018) 439–444.
[36] V. Kumar and P. Gupta, Importance of Statistical Measures in Digital Image Processing, International Journal of Emerging Technology and Advanced Engineering, 2(8) (2012) 56–62.
[37] Y. Li, Y. Zhang, X. Huang, and J. Ma, Learning Source-Invariant Deep Hashing Convolutional Neural Networks for Cross-Source Remote Sensing Image Retrieval, IEEE Transactions on Geoscience and Remote Sensing, 56(11) (2018) 6521–6536.
[38] H. Karamti, M. Tmar, and F. Gargouri, Content-based Image Retrieval System using Neural Network, in the Proceedings of IEEE/ACS Eleventh International Conference on Computer Systems and Applications (AICCSA), (2014) 723–728.
[39] I. El Nabarawy, A. M. Abdelbar, and D. C. Wunsch, Levenberg Marquardt and Conjugate Gradient Methods Applied to a High-Order Neural Network, in the Proceedings of International Joint Conference on Neural Networks (IJCNN), (2013) 1–7.
[40] https://www.kaggle.com/ambarish/wangdataset.
[41] https://www.kaggle.com/cantonioupao/oxfordflower-17categorieslabelled.
[42] http://www.cs.toronto.edu/ kriz/cifar.html.