1. Savary, L. & Balents, L. Quantum spin liquids: A review. Rep. Prog. Phys. 80, 016502 (2017).
2. Zhou, Y., Kanoda, K. & Ng, T. K. Quantum spin liquid states. Rev. Mod. Phys. 89, 025003 (2017).
3. Lee, P. A., Nagaosa, N. & Wen, X. G. Doping a Mott insulator: Physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17 (2006).
4. Oike, H., Miyagawa, K., Taniguchi, H. & Kanoda, K. Pressure-induced Mott transition in an organic superconductor with a finite doping level. Phys. Rev. Lett. 114, 067002 (2015).
5. Oike, H. et al. Anomalous metallic behaviour in the doped spin liquid candidate κ-(ET)4Hg2.89Br8. Nat. Commun. 8, 756 (2017).
6. Suzuki, Y. et al. Mott-Driven BEC-BCS Crossover in a Doped Spin Liquid Candidate κ-(BEDT-TTF)4Hg2.89Br8. Phys. Rev. X. to be published.
7. Vojta, M. Quantum phase transitions. Rep. Prog. Phys. 66, 2069-2110 (2003).
8. Gegenwart, P., Si, Q. & Steglich, F. Quantum criticality in heavy-fermion metals. Nat. Phys. 4, 186-197 (2008).
9. Zhao, H. et al. Quantum-critical phase from frustrated magnetism in a strongly correlated metal. Nat. Phys. 15, 1261–1266 (2019).
10. Vojta, M. Frustration and quantum criticality. Rep. Prog. Phys. 81, 064501 (2018).
11. Paschen, S. & Si, Q. Quantum phases driven by strong correlations. Nat. Rev. Phys. 3, 9-26 (2021).
12. Lyubovskaya, R. N. et al. Superconductivity of (ET)4Hg2.89Br8 at atmospheric pressure and Tc = 4.3 K and the critical-field anisotropy. JETP Lett. 46, 188-191 (1987).
13. Hébert, C.-D., Sémon, P. & Tremblay, A. M. S. Superconducting dome in doped quasi-2d organic Mott insulators: a paradigm for strongly-correlated superconductivity. Phys. Rev. B 92, 195112 (2015).
14. Putzke, C. et al. Reduced Hall carrier density in the overdoped strange metal regime of cuprate super-conductors. Nat. Phys. 17, 826-831 (2021).
15. Taniguchi, H. et al. Anomalous pressure dependence of superconductivity in layered organic conductor, κ-(BEDT-TTF)4Hg2.89Br8. J. Phys. Soc. Jpn. 76, 113709 (2007).
16. Tocchio, L.F., Lee, H., Jeschke, H.O., Valentí, R. & Gros, C. Mott correlated states in the underdoped two-dimensional Hubbard model: Variational Monte Carlo versus a dynamical cluster approximation. Phys. Rev. B 87, 045111 (2013).
17. Kagawa, F., Miyagawa, K. & Kanoda, K. Unconventional critical behaviour in a quasi-two-dimensional organic conductor. Nature 436, 534-537 (2005).
18. Behnia, K. Fundamentals of Thermoelectricity (Oxford University Press, Oxford, U.K., 2015).
19. Daou, R. et al. Thermopower across the stripe critical point of La1.6-xNd0.4SrxCuO4: evidence for a quantum critical point in a hole-doped high-Tc superconductor. Phys. Rev. B 79, 180505 (2009).
20. Lizaire, M. et al. Transport signatures of the pseudogap critical point in the cuprate superconductor Bi2Sr2−xLaxCuO6+δ. Phys. Rev. B 104, 014515 (2021).
21. Mandal, P. R., Sarkar, T. & Greene, R. L. Anomalous quantum criticality in the electron-doped cuprates. Proc. Natl Acad. Sci. USA 116, 5991–5994 (2019).
22. Arsenijević, S. et al. Signatures of quantum criticality in the thermopower of Ba(Fe1-xCox)2As2. Phys. Rev. B 87, 224508 (2013).
23. Maiwald, J., Jeevan, H. S. & Gegenwart, P. Signatures of quantum criticality in hole-doped and chemically pressurized EuFe2As2 single crystals. Phys. Rev. B 85, 024511 (2012).
24. Hartmann, S. et al. Thermopower evidence for an abrupt Fermi surface change at the quantum critical point of YbRh2Si2. Phys. Rev. Lett. 104, 096401 (2010)
25. Malone, L. et al. Thermoelectricity of the ferromagnetic superconductor UCoGe. Phys. Rev. B 85, 024526 (2012).
26. Kuwai, T. et al. Thermoelectric Power at Low Temperatures in Ce(Ni1-xPdx)2Ge2 and CeCu5.9Au0.1 in the Vicinity of Antiferromagnetic Quantum Critical Point. J. Phys. Soc. Jpn. 80, SA064 (2011).
27. Mun, E. D., Bud’ko, S. L. & Canfield, P. C. Thermoelectric power investigations of YbAgGe across the quantum critical point. Phys. Rev. B 82, 174403 (2010).
28. Matusiak, M., Gnida, D. & Kaczorowski, D. Quantum criticality in Ce2PdIn8: A thermoelectric study. Phys. Rev. B 84, 115110 (2011).
29. Limelette, P., Saulquin, W., Muguerra, H. & Grebille, D., From quantum criticality to enhanced thermopower in strongly correlated layered cobalt oxide. Phys. Rev. B 81, 115113 (2010).
30. Paul, I. & Kotliar, G. Thermoelectric behavior near the magnetic quantum critical point. Phys. Rev. B 64, 184414 (2001).
31. Kim, K. S. & Pépin, C. Thermopower as a signature of quantum criticality in heavy fermions. Phys. Rev. B 81, 205108 (2010).
32. Buhmann, J. M., Ossadnik, M., Rice, T. M. & Sigrist, M. Numerical study of charge transport of overdoped La2-xSrxCuO4 within semiclassical Boltzmann transport theory. Phys. Rev. B 87, 035129 (2013).
33. Georges, A. & Mravlje, J. Skewed Non-Fermi Liquids and the Seebeck Effect. Phys. Rev. Research 3, 043132 (2021).
34. Eto, Y., Itaya, M. & Kawamoto, A. Non-fermi-liquid behavior of the organic superconductor κ-(BEDT-TTF)4Hg2.89Br8 probed by 13C NMR. Phys. Rev. B 81, 212503 (2010).
35. Behnia, K., Jaccard, D. & Flouquet, J. On the thermoelectricity of correlated electrons in the zero-temperature limit. J. Phys. Condens. Matter 16, 5187–5198 (2004).
36. Furukawa, T., Kobashi, K., Kurosaki, Y., Miyagawa, K. & Kanoda, K. Quasi-continuous transition from a Fermi liquid to a spin liquid in κ-(ET)2Cu2(CN)3. Nat. Commun. 9, 307 (2018).